Int. J. Heat Mass Transfer. Vol. 10, pp. 1233-1254. Pergamon Press Ltd. 1967. Printed in Great Britain
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Abstract—The compressible laminar boundary layer in a pressure gradient with suction is analyzed on the
basis of the momentum and thermal integral equations in conjunction with sixth and (for separation)
seventh degree velocity, and seventh degree stagnation enthalpy profiles. For flow over a flat plate and for
flows in a pressure gradient, straightforward and simple methods of calculating the boundary layer for a
given Mach number, a given uniform wall temperature and a given suction distribution are shown. The
results obtained by the present analysis agree well with available exact or purportedly accurate solutions
for an impermeable or permeable wall, including the general asymptotic suction solutions for compressible
flows with a pressure gradient and heat transfer. The asymptotic solutions imply that it should always be
possible to entirely prevent separation in a given (finite) adverse pressure gradient by sufficient suction. A
mathematically simple class of solutions in which the pressure gradient is arbitrarily prescribed, but the
suction distribution is implicitly determined, is shown. Finally, the boundary layer with a linearly diminish-
ing external velocity is calculated in detail. Of especial interest here is the delay and complete prevention
of separation by suction, including determination of the minimum (homogeneous) suction parameter to

entirely avoid separation. Effects of Mach number and wall temperature are shown.

1
NOMENCLATURE F,, (]; [(H/H)) — (u/u,)*]dn;
A, defined by equation (13e); )
a;. coefficient of ' in velocity profiles; Fs, Ea/ Ontufus)w;
B, (1/K) h'(Pl/pw)(Tw/Tl)(ul/uw)i; F, (I)(u/ul)[l ~ (H/H,)] dn;
b,. coefficient of n' in stagnation en- )
thalpy profiles; Fs. Lo/on(H/H )]w;
NN . H, stagnation enthalpy [(u%/2) + ¢,T];
b,, approximation for b (). especially A H_H r
i b tion (37b); ) w1
c ?f/}gl(;lg‘l /’;"l;aqu;:/an ((politive for = (T/TOAL + [y = 1)/ 2]M§2}
’ suction;D‘ = (T /T /{1 + [(y — 1)/2]M2}.
’. .. . ForPr=1,h=T,/T,
s local skin friction coefficient [see .
equation (19)]; K, defined by equations (5a) and (5b);
c sq cific heat at’ constant pressure; k, coefficient of heat conductivity;
7 lpe P ’ L, streamwise characteristic length ;
Fy, §(u/uy)[1 — (u/u,)] dn; M, Mach number;
0 m, 1+ [(y — D2IMZ;
Pr, Prandtl number (uc,/k);
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zero heat transfer. For Pr = 1,
T, = T {1 + [(y — D2]MZ};
t, variable defined by equation (7);

u, v, velocity components in x and y
directions, respectively;

X, ¥ coordinates along and normal to
wall, respectively;

z, 2.

Greek symbols

o, o, defined by equations (53) and (56),
respectively;

pi. B2, defined by equations (53) and (56),
respectively;

A ratio of specific heats (c,/c,). (y = 14
for air);

9, boundary-layer thickness;

0, boundary-layer thickness in (x, t)
plane;

o*, displacement thickness [see equa-
tions (22)];

0, momentum thickness [see equation
2nl;

", 1/0,;

A, (0,/L) Re;

U, coefficient of viscosity;

g x/L;

¥
¢, — Pwby, | (dy/p) (reference [24]);
0

P, mass density;

o, (\/28);

Gy, (_vw/uao)Rz;

®,,P,, defined by equations (53) and (56),
respectively ;

o, — (pVw/Poll,) Re* (positive for
suction, negative for injection).

Subscripts

1, value at local outer edge of boundary
layer;

o0, value at reference point outside of
boundary layer;

s.. value at the separation point;

w, value at wall.

A prime_ () denotes derivative with respect to ¢.
A bar () denotes a constant (“‘average”) value
for flow (except for b,).
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1. INTRODUCTION

THE USE of suction for boundary-layer control,
for example in prevention of separation and in
stabilizing the laminar boundary layer, has been
of considerable practical and theoretical interest
for some time [1]. The purpose of the present
paper is to present a theoretical analysis of the
compressible laminar boundary layer in a
pressure gradient with suction, including heat
transfer. For simplicity, a Prandtl number of
unity and a linear viscosity temperature relation
are assumed. The analysis is based on the use of
the momentum and thermal integral equations
of the laminar boundary layer in conjunction
with sixth-degree velocity profiles and seventh-
degree stagnation enthalpy profiles. For the
special purpose of locating still more accurately
the separation point in an adverse pressure
gradient, seventh-degree velocity profiles satis-
fying an additional condition at the separation
point are used. The present method is an appli-
cation to suction of the method previously used
for impermeable walls [2] and for fluid in-
jection [3]. Momentum integral methods for the
laminar boundary layer with suction have, of
course, been used previously [4-8]. In many
cases, however, they have either been restricted
to flows without a pressure gradient, have been
applied only to rather specific problems and re-
mained of unknown accuracy, have not been
sufficiently accurate for predicting the separa-
tion point, or have broken down when the -
suction reached a certain magnitude. The
method used here has the following properties.
It is entirely self-contained, not making use of
any known exact solutions; it has been found to
agree well with exact or purportedly accurate in-
compressible or compressible solutions for pre-
diction of the separation point over an im-
permeable wall in a variety of adverse pressure
gradients [9]; it agrees well with exact solutions
for the flow over a flat plate with uniform
suction or with v, ~ x~*; for sufficiently large
suction it yields solutions in agreement with the
exact general asymptotic suction solutions for
compressible flows with or without a pressure
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gradient. The method is fairly general, applying
to flows in a given pressure gradient, a given
Mach number, a given suction distribution at
the wall, and (in case of heat transfer) a given
uniform wall temperature. Profiles can be
obtained here, as well as any other properties.
The method is fairly straightforward to apply,
involving at most the solution of a first-order
ordinary differential equation. Moreover, a
simplified approximate method of solving this
latter equation is shown here. (Since, however,
the method is of the one-parameter type, it may
perhaps not be adequate in dealing with initial-
value problems in which, for example, the
velocity profile is specified at a point down-
stream of the leading edge.)

A survey of literature on the laminar boundary
layer with suction has been made by Lew and
Mathieu [10] as of 1954, and more recently by
Wauest [11]. Concerning approximate methods
of solution for incompressible flow, in addition
to the momentum integral methods indicated
above, four recent contributions may be men-
tioned. Head [12-14] has developed a method
based on the use of both a momentum and
energy integral equation of the laminar bound-
ary layer in conjunction with a doubly infinite
family of velocity profiles chosen in accordance
with various types of exact solutions. Curle [15]
has extended Stratford’s method to suction, to
determine skin friction and separation. Smith
and Clutter [16] have recently applied a finite-
difference method of the Hartree-Wormersley
type. Spalding [40] has developed a modifica-
tion of the Pohlhausen method along the lines
of Walz and Thwaites, using known similarity
solutions.

In addition to Iglisch’s solution [17] for the
incompressible flow over a flat plate with homo-
geneous suction, there are mostly two types of
known exact solutions of the laminar boundary-
layer equations with suction, namely the asymp-
totic suction solutions and the similarity solu-
tions. For the limit of very large suction, the
well-known asymptotic suction velocity profile
for uniform suction and zero pressure gradient
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was first found by Griffith and Meredith [18]
and (independently) by Schlichting [19]. It was
subsequently shown by Pretsch [20] and (inde-
pendently) by Watson [21] that this profile
holds essentially also with pressure gradients
and variable suction velocity, in incompressible
flow. Young [22] obtained the asymptotic
suction solution for compressible flow with zero
heat transfer for flow without a pressure
gradient and uniform suction. Lew and Fanucci
[23] subsequently extended this analysis to
compressible flow over a flat plate with a given
uniform wall temperature. Morduchow [24]
has recently derived the asymptotic suction
velocity and temperature profiles for com-
pressible flows in a pressure gradient with heat
transfer under quite general conditions. These
latter solutions for u/u, and T/T,, which will be
discussed more fully in the main text, are those
which will be approached by the solution of the
laminar boundary-layer equations in any pres-
sure gradient with any given suction velocity and
wall temperature distributions.

The similarity solutions are those in which
the pressure gradient, suction distribution and
wall temperature distribution are such that the
partial differential equations of the laminar
boundary layer can be converted exactly into
ordinary differential equations. A number of
investigators have considered such solutions,
but it will suffice here to note the solutions for
the incompressible flow over a flat plate with
v, ~ x~*¥ first obtained by Schlichting and
Bussmann [25] and (independently) by Thwaites
[26] and Emmons and Leigh [27], and the
recent numerical solutions obtained by Koh
and Hartnett [28] for low-speed flows in which
Uy ~ X" o (x)~ x"m V2 T(x)y — T, ~x"Pr=
073andm=0.41;n= —110 10t

Most of the literature (with which no attempt
has been made here to deal comprehensively)
on the boundary layer with suction has con-
cerned incompressible flow. Regarding com-

t Quite recently Zamir and Young[41] have extended
these latter type of solutions to various negative values of
m. for incompressible flow.
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pressible flow, Lew and Fanucci [23] obtained
a solution for the compressible flow over a
flat plate with uniform suction (or injection)
and uniform wall temperature. Assuming u ~ T
and Pr = 1, they showed that the equations
could be transformed into those for incompres-
sible flow. The asymptotic suction solutions for
compressible flows have already been noted
[22-24]. Fligge-Lotz and Howe [29] have
applied a finite-difference method for calcula-
tions of the compressible laminar boundary
layer with suction (or injection) over hot or
cold walls with and without a pressure gradient.
Gribben [30] has shown that for Pr =1 and
u ~ T, the axisymmetric equations for a given
compressible flow with zero heat transfer and
suction or injection can be transformed into an
incompressible two-dimensional flow with a
determinable main stream and normal wall
velocity distribution. He also showed that with
heat transfer, a high-speed flow can be cor-
related with a low-speed compressible flow.
Pechau [31, 32] has recently extended Schlicht-
ing’s integral method [5] in conjunction with
an approximation of Truckenbrodt, to com-
pressible flows with zero heat transfer.

In the present study, in addition to presenting
a method of analysis of the compressible laminar
boundary layer with suction, the results for
flow with a linearly diminishing external
velocity are given in detail, including separation,
minimum (‘“‘critical”) uniform suction to pre-
vent separation entirely, approach of the solu-
tions to the asymptotic suction profiles for
large suction, and Mach number and heat-
transfer effects. Also included in the present
analysis is a class of mathematically relativity
simple (‘“‘constant-c”) solutions in which the
pressure gradient may be arbitrarily prescribed,
but the suction distribution then becomes
automatically determined, and which include
as a special case the similarity flow over a flat
plate with v, ~ x %,

2. BASIC EQUATIONS
The continuity, momentum and thermal
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boundary-layer equations for compressible,
steady, two-dimensional flow are [33]:

d(pw)/ox + &(pv)/dy = 0 (1)
pudu/ox + pvou/dy = pu, du,/dx
+ 0/0y(uoujoy)  (2)
puc,dT/0x + pvc,0T/dy = 0/0y(kdT/dy)
+ u(0ufoyy* — pyuy(duy/dxu.  (3)
From the ideal gas law, together with the

boundary-layer equation dp/dy = 0, it follows
that

plpy = T)/T. (4)
The coefficients of specific heat, and the Prandtl
number Pr, will be assumed as constant, with
Pr = 1 eventually, while the viscosity coefficient
u will be assumed as proportional to the
absolute temperature in the form [34]

Hue, = K(T/T,) (5a)
where K is chosen to satisfy the Sutherland
relation at the wall:

K = [T, + AT, + HNT/T)E  (Sb)
In this analysis the wall temperature T,, will be
assumed uniform; hence K will be constant.
For a constant Prandtl number, equation (3)
may be replaced by the equation [2]:
Pr{pudH/ox + pvéH/0y] = 0/0y(u0H/0dy)

~ (1 — Pr) 6/0y(uudu/dy).  (6)
It will be convenient to introduce the (Dorod-
nitsyn) variable ¢ defined by

y = (J')(T/To dr )

If a common momentum and thermal boundary-
layer thickness is assumed, equations (2) and
(6), in conjunction with equations (1), (5a) and
(7) may be integrated with respect to y over the
boundary-layer thickness to yield [3]:

F N+ {F1%+ Fy + [Fl +(1
1
+ ZL1M§>F2 ?}" _glefe Ty

2 1 u; py T,
(Fs—c¢ ()
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1R + [F;+ 1) P
Py U

K Tipoborp _ pyy -
= mT e P = Pt =R ©)

¢ = (1/K)(T/T) 9 /4. (10)

An approximate solution to the basic set of
partial differential equations can now be ob-
tained by assuming the velocity and stagnation
enthalpy as definite functions of ¢, with certain
parameters as unknown functions of ¢ required
to satisfy equations (8) and (9). In this analysis,
sixth degree velocity and seventh degree stagna-
tion enthalpy profiles will be chosen to satisfy
the following boundary conditions:

Atn=1:
u/u, =1, HH, =1 (11a)

O(ufuy)/on = 3*(ufuy)/on® = &>@/uy)/én® = 0

(11b)
O(H/H,)/on = 0*(H/H )/on*
= 3*H/H,)/on* = 0.  (11c)
Atng = 0:
ufu, =0, H/H,=h (11d)
—cO(ufu))/on = A + *w/w,)/on*  (lle)
— chd*(ufu,)/on* = hd>(u/u)/on’
+ AH/H)/n (110
—cd(H/H,)/on = (1/Pr)o*(H/H )/on*  (11g)
Bo(ufu,)/on — c&*(H/H ,)/on*
= (1/Pr) 3*H/H,)/on®
— [(1 — Pr)/Pr](wi/H ) {30(u/u)/on
x 0%(ufuy)/on* — (1/h) [0(H/H ,)/on]
x [O(ufuy)/on]?}.  (11h)

Equations {11e) and (11g) follow, respectively,
from equations (2) and (6) evaluated at the
wall, with v = v,(x) there, while equations (11f)
and (11h) follow by differentiating equations
(2) and (6) with respect to n and evaluating the
resulting terms at the wall (cf. [2, 3, 35]).
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For the case of Pr=1 and uniform wall
temperature (i’ = 0) the seventh degree stagna-
tion enthalpy profiles and the sixth degree
velocity profiles satisfying the above conditions
are:

H/H, = h+ (1 — h)(35n* — 84n° + 70n° — 20n7)

+ by(n — 20n* + 451° — 36n° + 1077)

— (¢/2)by(n* — 109* + 201> — 1575 + 4n7)

+ (/0 by(* — 4n* + 6n° — 4n° +1") (12

6
wpuy = Y, an (13a)
=1
where
1 c Ab;
01—2—'5‘(2—6)“2"“@"
{120 + A[12 — ¢ + Gy/M]IC — 12¢ + 60)
(13b)
gy = — Lcay — A1,
3 3 2 6’1 s
c Ab,
as = -—5+2(§'— ]) 02+§'
as =6+ Z—Ea—é—b—l‘ 2
5= 2 2 4h b
1 2 Ab,
06—- '”2—‘5(3“'36)(12'}"1"55
4y = — S0+ AL + (byc/20) (30

¢ —12¢c + 60

A = (1/KNTo/Ti)(p1/p )T/ Ty /u)A. (13e)
With these profiles, the explicit expressions for
F, to F5 are found to be:
F, = 010934 + [0-002109 — 0-0004126¢
+ 00000764 (Ab,/h} — 0-0000095 (A4b,/h)cJa,
— [0-0006216 — 0-0001528¢
+ 00000095¢%] a% — [0-0002063

+ 0-0000024 (4b, /h)] (Ab,/h)  (14a)
F,=F, + B + h) — 071429
+ (001905 — 0-002381¢) a, + (010714
— 0:01190c + 0-000595¢2) b,
— 0001190 (4b,/h)  (14b)
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F3 = al; F5 el bl
= (1 — h) [0-24603 — (0-01496
— 0-001806¢) a, + 0-000903 (4b,/h)]
— b,[0-06835 — (0-003247 — 0-000411c¢) a,
+ 0-000205 (Ab,/h)] — b,c[0-008381
— (0-000339 — 0-000044c) a,
+ 0000022 (Ab,/h)] — b,c*[0-000441
— (0-000016 — 0-0000021¢) u,
+ 0-0000010 (Ab, /h)]. (14d)
With profiles and expressions for F, to F
such as the above, equations (8) and (9) become
two ordinary differential equations in /(&) and
b,(&). For a permeable wall with suction it is
often convenient to express equations (8) and

(9) with c(&), instead of A(¢), as an unknown.
Thus,

(14¢c)

¢ P 1‘1
o4t T Py
T 4 Pl Fl
Y 2 FZ u,l
1 + e
[ ()
1 Tapptn @ -0 (15)
KT p,u F,
T ' F f
cc’ +c{1 g+pl+—4 --l-‘l}
T ¢ P F4 Uy
1 Ty P Uy b, — h)e
1 Lepate 0 2 U =Ry
KT p, u F4

For zero heat transfer at the wall, the solution
of the energy equation (6), for Pr = 1, is H =
constant, whence the following well-known
relation between the temperature and velocity
1s obtained for this case:

T/T, =1+ [(v — D2 M1 - (w/uy)*] (17)

From equation (17) it will follow that in this
case h = 1. For the more general case of heat
transfer, the temperature profiles can be ob-
tained from the stagnation enthalpy and velocity
profiles by means of the relation

T/T, = (H/H,) {1 + [(y - 1)/2] M3}

— () [(y — D2IME. (18)
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After the differential equations have been
solved, the desired boundary-layer properties
can be straightforwardly calculated. For
example, the local skin friction coefficient,
Nusselt number, momentum thickness and
displacement thickness will be, respectively :

(10u/dy),, ) u, 4,9

= B _ M D@y (19

G @, Cw e P
_RTNL _ b

AR A Wi

é

T,
BEqu ~YVday = KEZLF Re 1L
0/’1“1 u; T,

1)
3
5*;}(1 - pu)dy
J £uy

T,
- —TiF] Re ™ *L. (22)

«

k< [mF2
@
From equations (19-22),

(NujcR,) = [by/2A1 — hja,] (uy/uy)
0*/0 = (F,/F,)m(T,/T,) — 1.

(23)
(24)
According to equation (7) the transformation

back to the physical (x, y) plane can be made by

(y/L) Ret = /i J" (T/Tydn. (25

For the (isentropic) flow at the local outer edge
of the boundary layer, the following relations
hold:

T/ To =1+ [ = D2IMZ[1 - (u,/u,)*]

pl/pco = (Tl/Too)I/(y_“;
Mf = Mgo(ul/um)z (Tl/Tcx))_l

(26a)

From these relations, the following useful
relation may be readily derived :

1+ [ — D2IM7 = {1 + [(y — 1)2] M3}
x (T,/Ty).  (26b)
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3. FLOW OVER A FLAT PLATE

For the special case of zero pressure gradient
(such as flow over a flat plate at zero angle of
attack), in which u,/u, = T,/T, =1, u; =0,
A = 0, the foregoing equations simplify con-
siderably. First, the results obtained by the
equations given here will be compared with
certain exact (numerical) solutions. Then it
will be shown that the solutions for compressible
flow with heat transfer can be readily obtained
here from the solutions for incompressible flow.
(This is also in accord with exact analyses.)
Finally, a comparatively simple method will be
given for calculating the boundary layer over a
flat plate with a prescribed distribution of
normal velocity v,(x) along the wall and a
prescribed uniform wall temperature.

For flow over a flat plate, since A =0,
equation (13b) reduces to:

a, = 120/(c* — 12¢ + 60). 27
Case of homogeneous suction

For incompressible flow over a flat plate with
v, = constant, equation (15) can be reduced to

(cF, + c*dF /dc)c’ = (@, — )  (28)

where ¢ is constant. Since with 4 = 0, F, will
be a function of ¢ only, equation (28) can be
solved for £ vs. ¢ by separation of variables
and a quadrature. However, as will be seen, the
range of ¢ here will be 0 € ¢ < 4-644, and for
this range, it will be found that F, is virtually
constant. Hence the calculations can be simpli-
fied here still further by replacing F,(c) by a
constant “‘average” value F, for the flow. The
solution of equation (28) in conjunction with
equation (27), with ¢ =0 at &£ =0, is then
found to be:

9*¢=F, {—c—9060In[1 — (c/4644)]
+ 45301 (1 — [c(7-356 — c)25:84])
+ 2:496 (0-8089 — arctan [(7-356
— 20/7018])}.  (29)

From equation (29), 2¢*¢ = 62 can be readily
calculated as a function of ¢. For the case
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¢ — o0 (asymptotic suction solution) it is seen
that ¢ = 4-644. Exact (numerical) solutions for

10 50
] i )
o8 UI;»% 40
v A
o \ ﬁ PRESENT METHOD .

\ oo 30
u
7 _ oestol IsuscHIT| &)

. | ® =01

20
2.4,

¥ ? an ¢,
02 NN |

+

S 0
[e] 02 04 06 o8 -0

7 (-

FiG. 1. Comparison of calculated profiles and their deriva-
tives with exact (numerical) solutions. Incompressible flow
over a flat plate with uniform suction.

the homogeneous suction case have been cal-
culated by Iglisch [17]. The results of the
equations developed here for the velocity pro-
files and their first derivatives (to which the
local skin friction is proportional) are com-
pared in Fig. 1 with the exact solution for
o = 01, 1'0 and oo, and the agreement is seen
to be satisfactory throughout. The agreement
with the exact asymptotic suction profile (¢ —»
o0) is especially noteworthy in view of the fact
that the velocity profiles were chosen here
simply as (sixth degree) polynomials, without
attempting to match them in advance with the
known exact (exponential) asymptotic profile.
Moreover, this agreement is particularly im-
portant since both the exact solutions [24] and,
as will be seen subsequently, the approximate
solutions developed here, approach essentially
this same asymptotic solution when v, - —
even in the presence of a pressure gradient and
a variable v (x).

Case of v, ~ x~ %

Consider now the special case of incompres-
sible flow along a flat plate in which v,(x) is
such that ¢ is constant along the flow. Then F,
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will also be constant, and equation (8) reduces to
A =(2/F)(a; — ¢) (30)

where a, is given by equation (27). With the
condition A =0 at ¢ =0, the solution of
equation (30) is

A= (2/Fy)(a; — c). (31
From equation (10),
c= @A (32)

Eliminating A from equations (31) and (32), it
is found that

— 0,y = ¢ {JFy/[2a; — O} R7E (33)

MORRIS MORDUCHOW and STANLEY P. REYLE

Equation (33) shows that v,(x) ~ x™%. In this
case, the original partial differential equations
can actually be reduced exactly to an ordinary
differential equation, and exact solutions for
this case have been calculated [25-27]. The
equations obtained here can be used to cal-
culate velocity profiles, displacement and mo-
mentum thicknesses, and skin friction for any
values of

6y = (—v,/uy) Rﬁ = {\/Fl/[z(al - C)]} (34)
Equation (34) yields ¢ vs. o,. Figures 2 and 3
show the satisfactory agreement of the results
calculated here with those of exact solutions for
all values of o, calculated.

00— 3 T
+

[ foso |

+ + Ny +

075

“
v

:)'50 } L/

Iy

PRESENT METHOD —
|

+  THWAITES [26]

0251

[o] o5 0

15 20 25 30

]
by 3 4
bty (5

FiG. 2. Comparison of calculated velocity profiles with exact (numerical)
solutions. Incompressible flow over a flat plate. Suction velocity ~x~*.

20 100
1'5[ 75
)
ot N 4 PRESENT METHOD | ¢/}
Mgk R =
= + THWAITES [26]
\
o4 e ©  EMMONS AND LEIGH {50
\ (27
1
gy’ \
osh, % : 25
U,
! 82!
oF I ;\\J
% 25 50 75 100 125 50

F16. 3. Comparison of calculated distribution of c,, 6* and 6 with exact
(numerical) solutions. Incompressible flow over a flat plate with suction
velocity ~x~%.
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It should be noted that although exact
{numerical) calculations for suction have been
carried out only for 0 < ¢, < 10, the equations
developed here can be used for the entire
suction range 0 < o, < o0. In fact, correspond-
ing to g, -+ o0, ¢ is such that ¢, —c=0,
whence ¢ = 4-644. This is the same value of ¢
as that corresponding to the asymptotic suction
profile for the case of homogeneous suction.
Moreover, for the present incompressible flows,
equation (32) and the definitions of 7, A and ¢
imply that n = (1/¢) (— pvwy/ll,). Consequent-
ly, since the g; are here functions of ¢ only and
u/u, is given by equation (13a), the approximate
solution developed here implies that in the
asymptotic case (¢, — ), the velocity profile
u/u, for the case v,(x) ~ x~* will be exactly the
same function of (—p_ v, (x)y/i,) as in the
case of homogeneous suction. This is in exact
agreemerit with the implications of the asympto-
tic suction profiles [20, 21, 24].

General solution for compressible flow with heat
transfer and arbitrary v,(x)

For the general case of compressible flow
over a flat plate with a prescribed uniform wall
temperature, equation (15) can be written in the
form

(cFy + ¢*dFy/do)c’ = (9*/K) (a; — ©)
+ Fic*@'fp)  (35)

where F, and, in fact, all the coefficients g; in
the velocity profile, are functions of ¢ only.
Equation (35) for ¢(£) is the same as the cor-
responding equation for incompressible flow
with a mass flow parameter ¢; given by

@) = PLIYK. (36)

Thus ¢(&) will be the same as for an incompres-
sible flow with a mass flow distribution given
by equation (36). Therefore the velocity profiles
for compressible flow with a given uniform
wall temperature T, and a prescribed normal
mass flow distribution ¢(x) will be the same
functions of & and n as those for incompressibie
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flow with a normal mass flow ¢(x)/,/K, where
K is a constant, given by equation (5b).
For the case considered here, the solution for

by(§) is

b, = (1 — h)a, (37a)
where a, is given by equation (27). Hence,
b, = 120(1 — h)/(c? — 12¢ + 60). (37b)

Equation (37a) can be verified by noting that
with 4 = 0 and equation (37a), equations (14a)
and (14d) imply F, = (1 — h)F;. Then, sub-
tracting equation (16) from equation (15) and
using this relation yields in this case an equation
which, with h constant, is identically satisfied
by equation (37a).

With equation (37a) and 4 = 0, it is found
that equations (12-13d) imply

H/H, = h+ (1 ~ h)(u/u,). (38)

As a check, it is noted that equation (38) is
also implied exactly by the original partial
differential equations (2) and (6) for flow over a

flat plate with Pr=1 and a uniform wall

temperature. From equations (38) and (18)
it follows that the temperature profiles will be

T _ (v — 1) 2]
o050

_ Y=\ 2| %
+(1-h [1 +< 3 )Mw] i
(7= e (Y
( 2 )M“’ (u.oo) '
According to equations (19), (23), (27) and (37)

the local skin friction coefficient and Nusselt
number can be found from

c; Ret = 240 o/[c(c? — 12¢ + 60)]  (40)
Nuf(c;Re) = 3. (41)

After c(£) has been found, the velocity and
temperature profiles in the (¢, ) plane can be
found from equations (13) and (39) with 4 = 0.
Profiles in the (x, y) plane can then be found
from equations (25) and (10).

(39)
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It now remains only to find (&) for the
general case. For this purpose equation (35)
can be written in the form

z = fi(&, 2) (42a)
where z = ¢?, or ¢ = 4/z, and
2 — 2 a1
f](f, Z) — 2 [(D (al C)/K] + [Flc (p/(p]. (42b)

Fy + ¢dF,/dc
Moreover, a,(c) is given by equation (27), and
F,(c) by equation (14a} with 4 = 0. Equation
(42a) is a first-order ordinary differential equa-
tion which, for prescribed differentiable non-
zero (&), can be solved numerically without
difficulty by any of the well-known standard
techniques. The initial condition is 4 = 0, and
hence (for a finite ¢ at the leading edge) z = 0
at & = Q.

In most cases, F(c) will be virtually constant
and hence in equation (42b), F; may be replaced
by a constant “‘average” value, with dF;/dc
replaced by zero. The calculations then become
even simpler.

4. METHOD OF SOLUTION FOR PRESSURE
GRADIENT WITH ZERO HEAT TRANSKFER.
LOCATION OF SEPARATION POINT

In this section the method of solution of
the equations here will first be given for the
general case of a pressure gradient without
heat transfer in which the suction mass flow
distribution at the wall is prescribed. Then a
mathematically simple class of solutions, namely
those for which ¢ = constant, will be discussed.
A method for locating more accurately the
separation point in an adverse pressure gradient
will then be described. Finally, a simplified
approximate method of solving the ordinary
differential equations here will be shown.

For zero heat transfer and Pr = 1, it has
already been noted that h = 1, while the tem-
perature profiles can be found from the velocity
profiles from equation (17). Moreover, since
in this case (67/0y), =0, it follows from
equations (18) and (12) that b, = 0. It is there-
fore necessary only to solve a single differential
equation, namely the momentum equation (8)
or (15).
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Prescribed distribution of suction velocity

With (&) prescribed, it is first noted from
equation (14a) with b; =0 and h =1, that
F, = Fyc,a,) while according to equation
(13d) a, = a,(c, 4). Hence,

OF, ,  OF, aaz, da, )
( + ot —24 (43)

1= % € da,
Using equation (13¢) for 4, equation (15) can
then be written in the form

= N{/D; = f5({,¢) (44a)
where
¢% po Ty U,
————— a, — ¢
LS Koo T “s{ 1~ ©)

6a2 04 ¢* pu

+ (Fl-f-m——F)»i] (44b)
Uy

6F1 3(12
D, =
1 Fic‘f‘“c [a +aaz(8c
2Km p, u)

da,

07 pou, 04 )] (440)
For a given u,/u (&), M, and ¢(&), N,/D, is
an explicit function of & and c¢. Thus the first-
order differential equation (44a) can be solved
by any of the standard techniques for such
equations. For a sharp leading edge with finite
suction the initial condition is ¢ = 0 at & = 0.
Consequently, ¢ will be infinite initially. This
difficulty can be overcome by writing equation
{44a) in the form

8171 aasz P U (ul +£)_'1”_2£’)
Uy Py @

dé/dc = Dy/N, = f3(c, &) (44d)
and solving this equation for ¢ vs. ¢.t
+ Another possibility is to introduce z = ¢?, ¢ = ./z, and

write equation (44a) in the form z' = f,(£, z). This, however,
will introduce square-roots in many places here. In con-
nection with equation (44d), it may, in practice, be found
necessary to decrease the increments in ¢ near the end of the
calculation.



COMPRESSIBLE LAMINAR BOUNDARY LAYER

Class of solutions for which ¢ = constant

The ordinary differential equations here be-
come simplified in the class of cases for which
the solutions are such that ¢ = constant. The
pressure gradient [or u/u (£)] is here con-
sidered to be prescribed, but the required suc-
tion distribution ¢(£) must then be determined.
The quantity of suction may be prescribed by
prescribing the value of ¢. This class of solutions
isa generalization to non-zero pressure gradients
of the case, considered in Section 3 and in-
cluded in the present class as a special case, of
flow over a flat plate with v, ~ x™%.

For ¢ = constant, equation (8) with the use
of equations (43) and (13e) can be written in
the form

A = Ny/D; = f5(&, 4) (45a)
where

P Ty U P}
N,=K-2——">(a; —¢) — /I{F —
2 p1 T, uy ! ! P1

T, uy

F ‘op |2

+ [ 1+ m T, 2:| ”

OFy 0ay m (T\* py s [
Oa, 0A K\T,] p,u, |u

+(3—2y) fi] /1} (45b)
P
m (Tuo 2 p, uy OF, da,

=1 — —_————_— A
D, =3F: + ¢ \7, p(,ouc,oéazaA'l

Again, for a sharp leading edge, A =0at ¢ =0
and equation (45a) can be solved by standard
techniques. After A(¢) has been thus obtained,

the suction distribution follows from equation
(10):

(45c¢)

@) = Kc(Ty/T,.)/\/ 4

Location of separation point

The separation point is assumed to occur
where (0u/dy),, = 0, and hence where a, = 0.
With b, = 0, equations (13b) and (13e) imply
that for zero heai-transfer separation occurs
where

(12 — o) = — (120/m) (po/p1) (eo/u1) (1/K) >
47

(46)
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Thus, if, for example, ¢(&) is prescribed then the
separation point according to these equations
is found by first obtaining c(f) as described
above, and then finding the value of & for which
equation (47) holds. This procedure is based
on the use of sixth degree velocity profiles. It
has, however, been found [38] that although
sixth degree profiles give more accurate results
for the location of the separation point than
the usual fourth degree profiles, they may still
yield appreciable errors. Considerably increased
accuracy can be obtained by using for this
purpose (and essentially this purpose only)
seventh degree profiles [9, 36, 37] satisfying an
additional condition at the wall at the separa-
tion point. This condition, obtained by dif-
ferentiating equation (2) twice with respect to n
and taking values at = 0 at the point where
(Ou/on),, = 0, ist

HEIRTR
()

The seventh degree velocity profile satisfying
condition (48) in addition to conditions (11a-h)

is ;
uuy = Y ag (492)
where -
ay = @) + [(-2) + (c/15) + (r/240)] a,
+ (4b,)/(30h) (49b)
as = — (cay/3) — (A4b,)/(6h)
a, = — (r/12)a,
as = — (21/4) + [(—3) + ¢ + (3r/16)] a,
+ (Ab)/(2h)
ag =7+ [3 — (16¢/15) — (3r/20)] a,
— (84b,)/(15h)
a; = =3+ [(=1) + (c/3) + (r/24)] a,
+ (Ab,)/(6h) (49¢c)

1 In obtaining equation (48) it has been assumed that a
term proportional to (du/dy),, (3*u/dxdy),, will be negligible
close to and at the separation point (cf. the discussion in [38]).
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) ¢ + 24[1 + (b,0)/(30h)]
4 — ¢ + (c*/120)[16 — ¢ + (2b,/B)]
49d)
The stagnation enthalpy profiles remain as
in equation (12). Equations (49a—d) are useful
not only as a means for locating accurately
the separation point, but may be useful also to
calculate accurately the velocity profile at that
point.
The explicit expressions for F;, and F, now
become :
F, = 01156 + [0-00253 — 0-000887c
~ 0-0000850r + (0-000287 — 0-0000572¢
— 0-0000043r) (Ab,/h)] a,
+ [— 0001454 + 0-000574c
— 0:0000572¢? + 0-0000432r
— 0-0000085rc — 0-0000003r2] a3
— [0-000444 + 0-0000143(Ab,/h)]
x (Aby/h)
F, = F, + 31 + h) — 0:6875
+ [0-02976 — 0-00595¢ — 0-000446r] a,
+ [0:1071 — 0-01190c + 0-000595¢*] b,
— 0-002976 (Ab,/h). (50b)
The separation point can now be calculated
as described previously, except that the im-
mediately-above expressions are now to be
used for a,, a,, F, and F,. Thus equation (8)
must be solved for A(¢), or equation (15) for
c(&), using equations (49) and (50), and the
separation point is now the point where
a, = 0 according to equation (49b) and hence,
in the case of zero heat transfer (h = 1, b; = 0),
where
15 — 2¢ + (c*/8)] = ~ (105/m) (p/p;)
X (uy/uy) (1/K) @2,
Condition (51) replaces condition (47).

a, =

(50a)

&2y

Simplified approximate solution of equations and
simplified determination of separation point
Although the procedures just shown for
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solving the ordinary differential equations -are
essentially straightforward, it is possible to use
simplified approximate procedures for solving
these equations in the manner to be shown here.

For most cases, it will be found that F,
remains virtually constant along the flow.
Consequently F, may be replaced by a constant
“average” value, F,, with F) set equal to zero.
Such an approximation has already been made
for flows over an impermeable wall [2] and
flows with injection [3]. Noting that a, is of
the form a; = a; + f,4, and using equations
(26), equation (15) can then be written in the
form

’ 2 (pz T‘l “Y/')"luw
Z —ﬁf(,r_ ;‘T(al —\/Z)

s,

’ ’ 2
+22£+zﬂ l:——_&
4 uy F,

3y—-1 @
— 2 (77~ 1
+ @y — H)MZ (y—l F1)

T 2
x (—7?) (f;) ] =f&d (52
where

a, = 120/(c* ~ 12¢ + 60),
¢1=F1+F2—‘ﬂ1h
Bih =[(12 — &) h + b,]/[c* — 12¢ + 60].

Equation (52) is considerably simpler than
equation (44a).

With F, = F,, equation (8) similarly reduces
to:

(33)

2-y

, 2K (T)\ " lu,
/1 _—F—I—(TT:) Z(dl"‘C)

y 1
| __2:_&+(),_1)M§ou_
U, F, y—1

&N\ T, (u\?
"FT)'TT(Z) } 9

Equation (54) is useful, for example, for cases
of an impermeable wall (¢ = 0) and for the
class of solutions for which ¢ = constant. In
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connection with the latter class it is seen that
equation (54) is considerably simpler than
equation (45a).

In addition to setting F, = constant, there
is a possible further simplification, namely to
also set F, = constant. Such an approxima-
tion has been made to good advantage for an
impermeable wall [2] and for a transpiration-
cooled wall [3]. However, although F, does
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types of approximation can again be fruitfully
made. In particular F, may be replaced by a
constant value F, its value at the separation
point.t Such a procedure has already been
found to lead to accurate results for an imperme-
able wall [9, 36]. With F, replaced by F,,
equation (52) remains valid, but with F, re-
placed by F,, and with «,, §,, @, replaced,
respectively, by a,, 8,, and @,, where

ay = 7/{4 — ¢ + (c*/120)[16 — ¢ + (2b,/H)]},

@, =F;+ F, — B,h

Bah = {h — (/120 [(16 ~ )k + 2b,] + (2b,/15)}/{4 — ¢ + (¢¥/120)[16 — ¢ + (2b,/]}.CO

vary to only a limited extent, it will be found
that F, will vary appreciably more than F,
in cases of suction. Mereover, replacing F,
by a constant (‘‘average”’) value in equation (52)
will not greatly simplify the equation. It is
noteworthy, on the other hand, that for the
special class of solutions for which ¢ = constant
the replacement of F, by a constant value F,
will make equation (54) linear in 4 and hence
will yield the following relatively simple closed-
form solution:

¢ N e
F, .Y—l F,
A== (oc C)o 3; S )

yrl &y
| (“‘) " (“)“‘ "

Uy, T, (55)
where &, = F, + F, — B,h. Although equa-
tion (55) will be subject to some quantitative
errors, it should be noted that equations (55)
and (46) afford a rather simple class of approxi-
‘mate solutions for compressible flows with zero
heat transfer in an (essentially arbitrarily pre-
scribed) pressure gradient with (an implicitly
determined distribution of) suction.

The foregoing simplified procedures apply
for calculating properties of the boundary
layer prior to separation, and are based on the
sixth degree velocity profiles. For a more
accurate location of the separation point based

on seventh degree velocity profiles, the above
4K

Thus equation (52) in conjunction with equations
(56) must now be solved for z(¢), whence
c(f) = \/z is found, and the separation point
obtained by finding the value of ¢ for which
equation (51) is satisfied. The calculations will
be comparatively simple and straightforward.
A Dbasically similar simplified procedure for
determining the separation point for the con-
stant-c class of solutions can be readily developed.

As in the calculation of properties before
separation it is possible, in calculating the
separation point by the seventh degree profiles,
to add the simplifying approximation of re-
placing F, by F,, its value at the separation
point. As explained previously, such an addi-
tional approximation appears of doubtful worth
for flows in which the suction distribution is
prescribed. For the constant-c class of flows,
however, it is again noted that with such an
additional simpliﬁcation the closed-form solu-
tion for A(¢) given by equation (55) will hold,
but with «,, §,, @, replaced by a,, f,, B,.

In general, after the solutions (whether for
separation or prior to separation) have been
obtained by the simplified approximate pro-
cedures described here, an indication of their

T A rough value, ¢, of ¢ at the separation point may in
general be obtained in advance by estimating a rough
value, £, of ¢ at which separation may occur, evaluating
the right side of equation (51) at this £, and then solving
for c. This may then be used to evaluate F,,, which will be
relatively insensitive to the values of ¢, and &,
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accuracy or reliability can be obtained by
calculating F, (and, if pertinent, F,) with these
solutions and seeing how widely it actually
varies.t

5. PRESSURE GRADIENT WITH HEAT TRANSFER

The comparatively general case considered
in this section is that of a prescribed uniform
wall temperature in a given pressure gradient
with suction. In this case a constant value of
h (not necessarily one) is prescribed. The equa-
tions for this case are now considerably more
complicated because of the appearance of an
additional unknown, b;(¢). Equations (15) and
(16) must now be solved simultaneously for
M¢) and b,(&). The present study will be confined
to indicating and applying a very approximate,
but comparatively simple, method of solution
of the equations with heat transfer. The method
will be similar to that shown and applied for
an impermeable wall [2, 35] and a transpiration-
cooled wall [3].

In equations (15) F, may still be replaced by
a constant value F,, with F; = 0. Moreover, in
F, and a, (as well as in F, and a;) b, may at
first be replaced by an approximate value b,.
In the case of a sharp leading edge the value for
b, here might be taken to be the expression for
b, for flow over a flat plate, as given by equation
(37b). Equation (15) then becomes uncoupled
from equation (16) and can be solved separately.
In fact, equation (15) is reduced to equation
(52), and the numerical solution of this equation
then proceeds quite similarly to the case of
zero heat transfer, except that one must now
take into account the b, terms in &,, and insert
the given value of h (instead of h = 1) wherever
it appears. To solve equation (16) approximately
for b,(&), set F, =0 with F, replaced by a
constant “‘average” value F,. Subtracting equa-
tion (16) from equation (15) the following

1 It should be kept in mind that the method described
here of determining the separation point by the use of
seventh degree velocity profiles is predicated on the assump-
tion that separation will indeed occur. cf. the example in
Section 7.
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equation is then obtained:
(Fy — B (A/h) = o0y — ¢ — [by — (1 —h)c]

x (Fy/Fo).  (57)
With equations (14b) and (53) for F,, B,, and

oy, equation (57) is a linear equation in b,
whose solution is
bx(é) = Ns/Da (58)
where
120 F
Ny=[—r—o - W= -
3 <c2—12c+60>”ﬁ1 "F, 1]

Al. 1
-z [Fl +5(1+ k) ~ 07143

h
_ 30(0:01905 — 0:00238¢)(2c + 4) + (12— c)h]
¢ —12¢ + 60
F, 4
D,==4+2=|0 -0
s=F En(m 0:01191c
, A
+ 0000595¢? — 000119 -
(001905 — 0:00238¢) (Ac/2h) + 1]
¢z —12¢c + 60 )

Equation (58) may be used to obtain (at least
roughly) heat-transfer properties.

The separation point can be located in a
manner quite similar to the simplified method
described for zero heat transfer. Equation (52)
must be solved for z(¢) inserting now the given
value of h in the expression for a, and &, as
given by equations (56) and (50b), and also
inserting as an approximation for b, its value
for a flat plate (assuming a sharp leading edge)
as given by equation (37b). A further simplifica-
tion can be made by replacing F, here by a
constant value F,, its (estimated) value at
¢ = ¢, After c¢({) has been thus obtained the
separation point can be found approximately
by determining the value of ¢ at which a, as
given by equations (49b) and (49c) [with b,
there given by equation (37b)] vanishes.

The procedures outlined here can also be
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readily adapted to the constant-c class of
solutions with heat transfer.

6. ASYMPTOTIC SUCTION SOLUTIONS

F~aTl

It was shown in [24] that under quite
general conditions, in the limiting case of
infinite suction, i.e. ¢ — oo, the exact solutions
of the original partial differential equations
for u/u, and T/T, as functions of { and M,
approach the asymptotic suction solutions for
flow over a flat plate. It will be shown in this
section that such will also be the case with the
equations used here. Since it has already been
shown that in the asymptotic case of ¢ —»
the equations used here yield results in good
agreement with the exact solutions for incom-
pressible flow over a flat plate, and since the
effect of compressibility for flow over a flat
plate according to the equations used here is
in accerd with exact solutions, it follows that
the basic equations used here, namely equations
(15) and (16) in conjunction with the sixth
degree velocity profiles and the seventh degree
stagnation enthalpy profiles, will yield results
in satisfactory agreement with exact solutions
for compressible flows with pressure gradient
(and heat transfer) when the suction parameter
¢ is large. This is, of course, an important
further check on the accuracy of the equations
used here.

To show that according to the equations
used here the solutions for the velocity and
temperature profiles (in terms of { and M) will
approach those for flow in a zero pressure
gradient when @ — co, consider a solution in
which, as ¢ — oo, 4 — 0 and hence by equation
(13e) A—0. It is then seen from equations
(14a—d) that in this limit the expressions for
F, to F, in terms of ¢ and b, remain the same
as for flows without a pressure gradient.
Moreover, if one brings the braced term in
equation (15) to the right side, and considers
¢ — oo with ¢ remaining finite and therefore
¢ approaching zero, then the equation obtained
in this limit is that which will result by setting
the new entire right side of equation (15) equal
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to zero. However, @ — oo, the @? term there
will predominate, and hence in the limit this
right side will vanish if and only if (a, — ¢) = 0.
Using equation (13b) with 4 = 0, this will lead
to exactly the same (finite) value of ¢ as for the
asymptotic suction solution for flow over a flat
plate. It then follows from equations (13a-e)
that the velocity profiles u/u, will be the same
functions of n as for the flat plate flows. By
similar reasoning it is seen that equation (16)
in the asymptotic case reduces to the equation
b, = (1 — h) ¢, which is the same as the equation
which would be obtained for flow over a flat
plate. Thus, the basic equations used here
imply that as ¢ — oo the velocity and stagnation
enthalpy profiles w/u, and H/H, will tend to
the same functions of n as for flow without a
pressure gradient. In particular, equation (38)
will hold. Now, according to an exact analysis
[24] u/u, must remain the same function of { as
for flows without a pressure gradient, where

{= - pwvw{y) (dy/w).

If u is assumed to vary according to equation
(5), then it is found from the definitions that
n = (1/c){. Hence the result obtained here for
the velocity profiles is in accord with the exact
asymptotic solutions. Moreover, equation (18)
here, and equations (11) and (15) of [24],
imply that for Pr =1 the exact asymptotic
temperature profiles will be such that equation
(38) will hold, and this is also the case with the
approximate equations used here. It may be
noted that the entire discussion here holds for
a variable, as well as a uniform, suction para-
meter ().

An important corollary of the fact that the
velocity profiles u/u; (in the variable () in
general tend to the flat plate profiles as ¢ —+ ©
is that in any given (finite) adverse pressure
gradient it should always be possible to entirely
prevent separation by a sufficient amount of
suction.} This statement holds for the general

+ A quite recent illustration of this is afforded by the
similarity solutions of Zamir and Young [41].
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case of compressible flows with or without degree velocity profiles, with the results: ¢, =

heat transfer.

7. FLOW WITH A LINEARLY DIMINISHING
EXTERNAL VELOCITY

To see explicitly the nature of the solutions
and the effect of suction in an adverse pressure
gradient, the equations and procedures de-
veloped here have been applied to the case of
an external flow characterized by

ufu, =1-—2¢. (59)
Solutions for constant ¢

As already explained, the class of solutions
for which ¢ = constant are relatively easy to
obtain, but the corresponding suction distribu-
tion is determined, instead of prescribed. For
an external flow given by equation (59) and zero
heat transfer, equation (45a) has been solved
for various constant ¢ for 0 < ¢ <3. The
results obtained for the momentum thickness

4
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Fic. 4. Distribution of momentum thickness and skin-
friction for constant-c solutions. u,/u, = 1 — £; zero heat
transfer,
and skin-friction distribution are shown in
Fig. 4 for M, =0 and M, = ,/10. The cor-
responding suction distributions are shown in
Fig. 5. In addition, the separation points have
been calculated on the basis of the seventh-

+ This is the one case encountered herein in which the
seventh-degree profiles lead to a later separation point
than the sixth-degree profiles.

0-173 and 0:370f for ¢ = 1 and ¢ = 3, respec-
tively, when M_ =0, while & = 0145 for
c=1and M, =./10. For c=3 and M, =
/10, separation apparently does not occur
(due to the large suction associated with this
case, cf. Fig. 5). As a check on the simplified
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FiGc. 5. Distribution of mass flow parameter (&) for
“‘constant-¢” solutions.

method based on a constant F,, equation (54)
was solved for these cases, and the results were
found to remain very close to those shown here.

Solutions for uniform suction and incompressible
[flow. Separation. Critical suction velocity

The results obtained here for ¢ = constant are
of considerable physical interest, and will be
discussed in some detail,

First, solutions obtained for incompressible
flow for the displacement and momentum
thickness, and the skin-friction distributions
are shown in Figs. 6 and 7 for various values
of @. For this purpose equation (44d) was first
solved for ¢ = 01 and 0-5, and then equation
(52), based on the simplifying approximation
of a constant F, along the entire flow, was
solved. The results were found to be practically
identical. In all of the remaining calculations
the procedure based on a constant F; was used.
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FiG. 6. Distribution of displacement and momentum thickness for uniform
suction parameter ¢, u,/u,, = 1 — £, incompressible flow (M, = 0, h = 1).
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F1G. 7. Distribution of skin friction coefficient for various values of the

suction parameter. u,/u, =1 — &,

incompressible flow without heat

transfer.

In the case of incompressible flow with u, /u_,
1 — ¢ and constant ¢, equation (52) can be
solved by separation of variables with the result

E=1-exp[~F, Off(c)dc] (602)

where

fe) = c/lo*(@, — o) + *®,].  (60b)

The results of Head [14] for c;, based on his
momentum-and-energy-integral method, for the
case ¢ = 1 are included in Fig 7, and these
agree rather- well with the results obtained
here.

The results shown here for the skin-friction
are of especial interest. It is seen that according
to Fig. 7, separation will occur at some point
if the suction is sufficiently small so that
@ < 1-461. At ¢ = 1461, in fact, it is seen that
at the separation point, dc,/d = 0.f For ¢ >
1-461 it is found that separation will not occur
anywhere. Thus, the value ¢ = 1-461, to be
denoted by ¢, may be regarded here as the
“critical” value of the suction parameter o.

+ This is obtained from the method of analysis used here.
The actual behavior of the derivative dc,/d¢ for ¢ = ¢,
at, and in a small region near ¢ = & according to an exact
solution may be worthy of investigation.
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This result can be obtained analytically by
noting that according to equation (47) separa-
tion will occur in the present incompressible
flow where ¢ = ¢, and

¢} — 12¢ + 12092 = 0. (61)
¢, vs. @ according to equation (61) is plotted in
Fig. 8, and it is seen that there are no (physically

i5
8,

T RN
v

FIG. 8. Variation of ¢, with suction parameter ¢, for u, /u o0 =
I — &, incompressible flow and zero heat transfer.

significant) roots for ¢, when ¢ > 1-461. At
¢ = 1461 = ¢, it is seen that dc/dp — o0, or
de/dc, = 0. The location of the separation
point & according to equations (60) and (61) is
shown in Fig. 9, together with results of Thwaites
[4] and of Curle [15]. (Thwaites was able to
obtain results only for ¢ < 0-833.) Although, as
previously noted, the results for £, obtained by
equations (60} and (61), based on sixth degree
velocity profiles, are subject to some quantitative
inaccuracy they are of importance in indicating
the existence of a critical ¢ and in determining
its approximate value. The existence of such a
¢ has already been predicted (Section 6) here
on the basis of the general asymptotic suction
solutions.

It should be noted that the results for & vs.
¢ given by Curle in [15] and shown in Fig. 9
were based on setting c; = 0 in equation (23)
of [15] and solving for & However, further
study of this equation, for the purpose of
calculating the skin-friction distribution there-

MORRIS MORDUCHOW and STANLEY P. REYLE

from,} has indicated that for a fixed ¢ the curve
of ¢, vs. £ will consist of more than one branch
{since it is of fourth degree), and that for the
higher values of the suction parameter (in-
cluding ¢ > 1-2) the branch which contains the
point for which ¢, = 0 is a branch approaching
the ¢ axis from below, ie. from negative c,,
and hence from artificial values. The branch
of positive ¢, in these cases does not cross the
¢ axis, Thus the curve of Curle near and at
¢ = ¢, does not appear to have an entirely
consistent physical basis, but there is a neverthe-
less noteworthy similarity between Curle’s curve
and that obtained by the present procedure.

From Fig. 9 it is seen that according to the
results obtained here, £, has a definite value
(=0438) <1 for ¢ = ¢, When ¢ > ¢,
separation does not occur anywhere.

To obtain quantitatively more accurate results
for &, vs. ¢ when ¢ < ¢, the procedure based
on the seventh degree velocity profiles has
been applied to the flows considered here. The
results are shown in Fig. 9. The calculations were
based on F, = constant, but calculations for
@ < 15 without this assumption (see Fig. 9)
gave very similar results. It should be noted that
the one value of £, namely for ¢ = 1, calculated
by Head [ 14] by his method practically coincides
with that obtained here. The results based on
the seventh degree profiles are qualitatively
similar to those based on the sixth degree
profiles for 0 < ¢ < 1'3 (roughly), but deviate
considerably for larger ¢ and do not yield a
critical ¢ in the manner described above. For
@ > 221, however, it is found that a single-
valued solution for ¢ vs. ¢ cannot be obtained
for all £ before any separation. This is probably
due to the inaccuracy in the seventh-degree
profiles away from the separation point, due
to neglecting a term proportional to tdt/0x
in the use of these profiles. The exact curve of
£, vs. ¢ may be expected to follow the seventh
degree curve in Fig. 9 at least for lower ¢’s.

+ The authors acknowledge the aid of Mr. Denis Black-
more in these calculations.
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F1G. 9. Separation point vs. suction parameter for u,/u, =1 — £.

For higher ¢’s the exact curve may be expected
to appear like the sixth degree curve of Fig. 9,
although further research may be warranted to
verify this.t

Approach to asymptotic suction profiles

To note the approach of the solutions to the
general asymptotic suction profiles, solutions
for incompressible flow with u,/u, =1—¢
and constant suction were obtained for ¢ = 3
and ¢ = 5. According to equation (19) of [24],
the asymptotic suction solution for these flows
will yield

(€o=w = 20(1 — E)Re™ L. (62)

It should be noted that equation (62) is also
implied exactly by equation (19) of the present
analysis, since for ¢ — o, a, — ¢ = 0. Figure 7
illustrates, for ¢ = 3 and 5, the approach of
the present solutions for the skin friction to the
asymptotic suction solutions. Moreover, to
contrast the nature of the solutions for ¢ < ¢,
and ¢ > ¢, the development of the velocity

t+ An carly problem of Prandtl's [39] and considered,
for example, recently by Head [13] and by Curle [15] has
been to find the required suction distribution to maintain
a zero skin-friction layer, in a flow characterized by equation
(59), starting at the point ({ = 0-120) at which (Ju/dy),, first
vanishes. This essentially initial-value problem is different
from that considered here.

profiles along the flow is shown in Fig 10 for
¢ =08 3 and 5. The asymptotic suction
profile (¢ — o) is also shown here, and the
approach toward this profile for ¢ = 5 can be
clearly seen.
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F1G. 10. Velocity profiles for u,/u,, = 1 — { incompressible
flow without heat transfer.

Mach number and heat-transfer effects

An indication of the effect of compressibility,
with uniform suction, can be seen in Fig 9,
which shows the results obtained here (by the
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seventh-degree-velocity-profile method) for the
separation point vs. ¢ for M, = 0 and M ,,/10
with zero heat transfer (h = 1) and with the
wall cooled (h = 0-5).t The forward movement
of the separation point with Mach number for
a fixed h may be noted here, together with the
delay of separation due to wall cooling. More-
over, the minimum (‘“‘critical””) values of ¢
above which separation is entirely avoided with
zero heat transfer was calculated based on
sixth degree profiles for M,, = 0 to /10, and
the results are shown in Fig. 11. ¢, is here seen
to increase fairly rapidly with Mach number.

¢CRIT

FiG. 11. Critical suction parameter for prevention of
separation. Zero heat transfer. u,/u, = 1 — £

For the low-speed (M, = 0) flow charac-
terized by equation (59) with uniform suction
it may be noted that (admittedly very) approxi-
mate values of ¢, with heat transfer can be quite
easily obtained from the equations here, similarly
to the manner described above for zero heat
transfer (h = 1). Thus, sétting a, = 0, where
a, is given by equations (13b) and (13e), yields
(foru,ju, =1—¢and M = 0)

120 — he2(K/9)[12 — ¢, + (by/m)] = 0.  (63)

Approximating b; by equation (37b) (with ¢
replaced by ¢, and determining the value of

t+ For h = 0-5 the simplifying approximation of a con-
stant F,, viz F, = F,, (in addition to a constant F,) was
made.

and STANLEY P. REYLE

¢ for a given h for which dg/dc, = 0 yields the
results for ¢, vs. h shown in Fig. 12. Figure 12
shows that for the range calculated (03 < h < 1-4)
the effect of wall heating or cooling on ¢, is

T =500°R

o4 06 08

h

10 12 14
F1G. 12, Variation of critical suction parameter with h for
ul/um =1- é,Muo =0.

surprisingly small and in fact in the unexpected
direction, in spite of the fact that wall cooling
with a given suction parameter ¢ does appreci-
ably delay separation (Fig. 9). Further investiga-
tion of this problem, for example a precise
determination, if possible, of ¢, vs. h, would
appear worthwhile.
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Résumé—La couche limite laminaire compressible avec gradient de pression et aspiration est analysée
sur la base des équations intégrales de quantité de mouvement ¢t de I’énergie en utilisant des profils de
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vitesse du sixiéme et (pour le décollement) du septiéme degré et des profils d’enthalpie d’arrét du septiéme
degré. Pour les écoulements sur une plaque plane et avec un gradient de pression, des méthodes directes
et simples sont données pour calculer la couche limite avec un nombre de Mach donné, une température
pariétale uniforme donnée et une distribution donnée d’aspiration. Les résultats obtenus par la théorie
actuelle sont en bon accord avec des solutions disponibles exactes ou prétendant étre précises, dans le
cas d’une paroi perméable ou non, comprenant les solutions générales asymptotiques avec aspiration
pour des écoulements compressibles avec gradient de pression et transport de chaleur. Les solutions
asymptotiques sembleraient montrer qu'il serait toujours possible d'éviter complétement le décollement
avec un gradient de pression contraire donné (fini) 4 'aide d’une aspiration suffisante. On expose un cas
mathématiquement simple de solutions pour lesquelies le gradient de pression est fixé arbitrairement,
mais la distribution d’aspiration est déterminée de fagon implicite. Finalement, la couche limite avec une
vitesse extéricure diminuant linéairement, est calculée en détail. Ce qui est spécialement intéressant est le
retard et la disparition du décollement par I’aspiration, y compris la détermination du minimum du
paramétre d’aspiration (homogéne) nécessaire pour éviter entiérement le décollement. Les effets du nombre
de Mach et de la température pariétale sont exposés.

Zusammenfassung—Die kompressible laminare Grenzschicht mit Druckgradienten und Absaugung wird
analysiert auf Grund der Integralgleichungen fiir Impuls und Energie und in Verbindung mit Geschwindig-
keitsprofilen sechster und (fir Abldsung) siebter Ordnung und Profilen fiir die Staupunktenthalpie von
siebter Ordnung. Fiir Strémungen entlang ebener Platten und Strdmungen mit Druckgradienten werden
direkte und einfache Methoden zur Berechnung der Grenzschicht bei gegebener Machzahl, gegebener
gleichformiger Wandtemperatur und gegebener Absaugungsverteilung mitgeteilt. Die in der vorliegenden
Analyse erhaltenen Ergebnisse stimmen gut mit verfiigbaren exakten oder ziemlich genauen Losungen fiir
durchléssige und undurchldssige Winde iiberein, einschliesslich der allgemeinen assymptotischen Absau-
gungslésungen fiir kompressible Stromungen mit Druckgradienten und Wirmeibergang Die assympto-
tischen Losungen deuten an, dass es immer moglich sein miisste, durch ausreichende Absaugung eine
Abldsung bei gegebenem (endlichem) gegenliufigen Druckgradienten vollstindig zu verhindern. Eine
mathematisch cinfache Losung wird angegeben fiir einen beliebig vorgeschriebenen Druckgradienten
bei einer implizit bestimmten Absaugungsverteilung Schliesslich wird die Grenzschicht fir linear
abnehmende #ussere Geschwindigkeit im einzelnen berechnet. Von besonderem Interesse hier ist die
Verzogerung und vollstindige Vermeidung einer Ablosung durch Absaugung, wofiir die kleinsten
(homogenen) Saugparameter bestimmt werden. Einfliisse der Machzahl und der Wandtemperatur sind
angegeben.

AnBorsnaA—IIpOBOIMTCA AHAIN3 CHMMAEMOro JJAMKHAPHOr0 NOrPAHHYHOTO C:I0A C rpajHeH-
TOM RABJEHHA TPM HAJIHYMM OTCOCA HA OCHOBE MHTErPaJIbHHX YDaBHEHU! MOMEHTa M Tenia
B COYETAHMM C PACHpefe/ieHHeM CKODOCTH B ILIIECTOM M CeAbMORt (IUIA OTPHBA) CTENeHU H
pacnpejieleHHA HTAJbLIHN TOPMOMEHUA B CEAbMON CTeneHu.

TMokasaHa BO3MOMHOCTb IPHMEHEHMA IIEPCNEeKTHBHHX H NPOCTHX METOROB peuleHuA
IIOTPAHHYHOTO CJIOA A Cilyvyaes OGTeKaHMA IIOCKOM NJIACTHHH M TeYEHUN NMPH HATMUMM
rpamMeHTa [aBJEHMA NPH BAJAHHHX YMcHax Maxa, 3aJaHHOM PAaBHOMEPHOM pacnpejeseHHH
TEMIEpaTypH CTEHKN M 3aaHHOM pacnpeRenenun orcoca. IlosyyeHHne pe3yasTaTH X0poIIO
COTJIACYIOTCA € M3BECTHHIMM TOYHBIMUM WJIM TPAKTHYECKM TOYHHIMM DELIEHHAMHU JUIA He-
MPOHMLAeMOR WIH MPOHULAEMON CTEHKHM, BKIIIOYAA OGlIMe ACHMNTOTUYECKHE PelUIeHUd iaH
OTCOCA B MOTOKAX CHKUMAEMON SKUAKOCTH NMPH HAJTHYMHU TeNJI006MeHa ¥ rpaJueHTa TABJIeHUA.
ACHMNTOTHYECKHE pelleHMsA MNOKA3HBAIOT, YTO MNPH JOCTATOYHOM OTCOCE BCErla MOMHO
MOJIHOCTBIO YCTPAHHTb OTPHIB NIPH 33JaHHOM (KOHEUHOM) OTPUUATEJbLHOM rpajueHTe AaBae-
HuA. PaccMOTpen MaTeMaTHYeCKH NPOCTON cliyuyalh npu NMPOU3BOSIBHO 3AZAHHOM TpaAMeHTe
JABJEHMA M ONpeleNAeMOM B HEABHOM BH[e pacnmpefenenuu orcoca. Haxowen, caemanu
noApo6HEe pacyeTH MOrPaHHYHOTO CJIOA NPH JIHHENHO yMeHbluaolietca BHeUIHeN CKOPOCTH.
OcoG6LIft MHTEpeC NpeNCTaBIAeT 3aAePHKKA U NMOJHOe NMPefOTBpallleHHe OTPHBA NpH OTCOCe,
BKIIIOYAA ONpeJeSeHHA MHHMMAJbHOro (FOMOTeHHOr0) mapameTpa OTCOCA 1A [MOJBLHOrO

NpefoTBPAIeHUA OTPHBA. YYHTHBAETCA BIHAHME YuC/Ia Maxa U TeMnepaTypel CTEHKH.



