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Ahatraet-The compressible laminar boundary layer in a pressure gradient with suction is analyzed on the 
basis of the momentum and thermal integral equations in conjunction with sixth and (for separation) 
seventh degree velocity, and seventh degree stagnation enthalpy profiles. For flow over a flat plate and for 
flows in a pressure gradient, straightforward and simple methods of calculating the boundary layer for a 
given Mach number, a given uniform wall temperature and a given suction distribution are shown. The 
results obtained by the present analysis agree well with available exact or purportedly accurate solutions 
for an impermeable or permeable wall, including the general asymptotic suction solutions for compressible 
flows with a pressure gradient and heat transfer. The asymptotic solutions imply that it should always be 
possible to entirely prevent separation in a given (finite) adverse pressure gradient by sufficient suction. A 
mathematically simple class of solutions in which the pressure gradient is arbitrarily prescribed, but the 
suction distribution is implicitly determined, is shown. Finally, the boundary layer with a linearly diminish- 
ing external velocity is calculated in detail. Of especial interest here is the delay and complete prevention 
of separation by suction, including determination of the minimum (homogeneous) suction parameter to 

entirely avoid separation. Effects of Mach number and wall temperature are shown. 
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defined by equation (13e) ; 
coefficient of 11’ in velocity profiles ; 

(l/K) h’(pllp,XT,lT,Xu,lu,)l; 
coefficient of ‘1’ in stagnation en- 
thalpy profiles ; 
approximation for bl(<). especially 
as given by equation (37b); 
(l/K)(T,/TJ (PJA (positive for 
suction) ; 
local skin friction coefficient [see 
equation (19)] ; 

specific heat at constant pressure ; 

jh’QC1 - b/u,,1 dtl; 
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Pr, 
Re, 
40 
rr 
& 
T, 
T,. 

j[VWt) - Wt,“l drl; 

i$wul)lw; 

jWt)[l - VW,)1 dtl; 

ifWMHIH,&,.~ 
stagnation enthalpy [(u2/2) + cpT]; 

HwIH, 
= Kv/TV{1 + [(Y - W]M:} 
= V,vK,V{1 + [(r - W3M3 
For Pr = 1, h = T,/T,; 
defined by equations (Sa) and (Sb); 
coefftcient of heat conductivity ; 

streamwise characteristic length; 
Mach number ; 

1 + [(r - W]M: ; 
Prandtl number (pc,jk); 
(pmu, L/p,) Reynolds number ; 

PmUmXIPm ; 
c[W,lh) - c] ; 
Sutherland constant (216”R for air); 
absolute temperature; 
equilibrium wall temperature for 
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zero heat transfer. For Pr = 1, 
T, = T,{ 1 + [(y - wpt3 ; 

t, 
U, a, 

x, y, 

2, 

variable defined by equation (7); 
velocity components in x and y 
directions, respectively; 
coordinates along and normal to 
wall, respectively ; 

C2. 

Greek symbols 
defined by equations (53) and (56) 
respectively ; 
defined by equations (53) and (56) 
respectively ; 
ratio of specific heats (cJc,). (y = 1.4 
for air) ; 
boundary-layer thickness ; 
boundary-layer thickness in (x, t) 
plane ; 
displacement thickness [see equa- 
tions (22)] ; 
momentum thickness [see equation 

WI; 
t/6*; 
k&/Q2 Re; 
coefficient of viscosity ; 

XlL ; 

- p,o,j(dy/p) (reference [24]); 
0 

mass density; 

(P(J2 0 ; 
( - du,P$ ; 
defined by equations (53) and (56) 
respectively ; 
- (p,u,/p,u,) Re* (positive for 
suction, negative for injection). 

value at local outer edge of boundary 
layer ; 
value at reference point outside of 
boundary layer ; 
value at the separation point; 
value at wall. 

A prime (‘) denotes derivative with respect to r. 
A bar (-) denotes a constant (“average”) value 
for flow (except for 6,). 
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1. INTRODUCTION 

THE USE of suction for boundary-layer control, 
for example in prevention of separation and in 
stabilizing the laminar boundary layer, has been 
of considerable practical and theoretical interest 
for some time [l]. The purpose of the present 
paper is to present a theoretical analysis of the 
compressible laminar boundary layer in a 
pressure gradient with suction, including heat 
transfer. For simplicity, a Prandtl number of 
unity and a linear viscosity temperature relation 
are assumed. The analysis is based on the use of 
the momentum and thermal integral equations 
of the laminar boundary layer in conjunction 
with sixth-degree velocity profiles and seventh- 
degree stagnation enthalpy profiles. For the 
special purpose of locating still more accurately 
the separation point in an adverse pressure 
gradient, seventh-degree velocity profiles satis- 
fying an additional condition at the separation 
point are used. The present method is an appli- 
cation to suction of the method previously used 
for impermeable walls [2] and for fluid in- 
jection [3]. Momentum integral methods for the 
laminar boundary layer with suction have. of 
course, been used previously [4-81. In many 
cases, however, they have either been restricted 
to flows without a pressure gradient, have been 
applied only to rather specific problems and re- 
mained of unknown accuracy, have not been 
sufficiently accurate for predicting the separa- 
tion point, or have broken down when the 
suction reached a certain magnitude. The 
method used here has the following properties. 
It is entirely self-contained, not making use of 
any known exact solutions; it has been found to 
agree well with exact or purportedly accurate in- 
compressible or compressible solutions for pre- 
diction of the separation point over an im- 
permeable wall in a variety of adverse pressure 
gradients [9] ; it agrees well with exact solutions 
for the flow over a flat plate with uniform 
suction or with a, - x -+; for sufficiently large 
suction it yields solutions in agreement with the 
exact general asymptotic suction solutions for 
compressible flows with or without a pressure 
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gradient. The method is fairly general, applying 
to flows in a given pressure gradient, a given 
Mach number, a given suction distribution at 
the wall, and (in case of heat transfer) a given 
uniform wall temperature. Profiles can be 
obtained here, as well as any other properties. 
The method is fairly straightforward to apply, 
involving at most the solution of a first-order 
ordinary differential equation. Moreover, a 
simplified approximate method of solving this 
latter equation is shown here. (Since, however, 
the method is of the one-parameter type, it may 
perhaps not be adequate in dealing with initial- 
value problems in which, for example, the 
velocity protile is specified at a point down- 
stream of the leading edge.) 

A survey of literature on the laminar boundary 
layer with suction has been made by Lew and 
Mathieu [lo] as of 1954, and more recently by 
Wuest [ 111. Concerning approximate methods 
of solution for incompressible flow, in addition 
to the momentum integral methods indicated 
above, four recent ~ntributions may be men- 
tioned. Head [12-141 has developed a method 
based on the use of both a momentum and 
energy integral equation of the laminar bound- 
ary layer in conjunction with a doubly infinite 
family of velocity profiles chosen in accordance 
with various types of exact solutions. Curle [ 151 
has extended Stratford’s method to suction, to 
determine skin friction and separation. Smith 
and Clutter [16] have recently applied a tinite- 
difference method of the Hartree-Wormersley 
type. Spalding [40] has developed a modifica- 
tion of the Pohihausen method along the lines 
of Walz and Thwaites, using known similarity 
solutions. 

In addition to Iglisch’s solution [17] for the 
incompressible flow over a flat plate with homo- 
geneous suction, there are mostly two types of 
known exact solutions of the laminar boundary- 
layer equations with suction, namely the asymp- 
totic suction solutions and the similarity solu- 
tions. For the limit of very large suction, the 
well-known asymptotic suction velocity profile 
for uniform suction and zero pressure gradient 

was first found by Griffith and Meredith [18] 
and (inde~ndently) by Schhchting [19]. It was 
subsequently shown by Pretsch [20] and (inde- 
pendently) by Watson [21] that this profile 
holds essentially also with pressure gradients 
and variable suction velocity, in incompressible 
flow. Young [223 obtained the asymptotic 
suction solution for compressible flow with zero 
heat transfer for flow without a pressure 
gradient and uniform suction. Lew and Fanucci 
[23] subsequently extended this analysis to 
compressible tlow over a flat plate with a given 
uniform wall temperature. Morduchow 1241 
has recently derived the asymptotic suction 
velocity and temperature profiles for com- 
pressible flows in a pressure gradient with heat 
transfer under quite general conditions. These 
latter solutions for u/u1 and T/T,. which will be 
discussed more fully in the main text, are those 
which will be approached by the solution of the 
laminar boundary-layer equations in any pres- 
sure gradient with any given suction velocity and 
wall temperature distributions. 

The similarity solutions are those in which 
the pressure gradient, suction distribution and 
wall temperature distribution are such that the 
partial differential equations of the laminar 
boundary layer can be converted exactly into 
ordinary differential equations. A number of 
investigators have considered such solutions, 
but it will s&ice here to note the solutions for 
the incompressible flow over a flat plate with 
v, - x -* first obtained by Schlichting and 
Bussmann [25] and (inde~ndently) by Thwaites 
[26] and Emmons and Leigh [27], and the 
recent numerical solutions obtained by Koh 
and Hartnett [28] for low-speed flows in which 
u1 N xrn,u,(x) * X (m- ‘)‘*, T,(x) - Tt ‘v Y, fi = 
0.73andm=O.f. l:n= -I to IO.? 

Most of the literature (with which no attempt 
has been made here to deal comprehensively) 
on the boundary layer with suction has con- 
cerned incompressible flow. Regarding com- 

t Quite recently Zamii and Young[41] have extended 
these latter type of solutions to various negatiw values of 
m for incompressible flow. 
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pressible flow, Lew and Fanucci [23] obtained boundary-layer equations for compressible, 
a solution for the compressible flow over a steady, two-dimensional flow are [33] : 
flat plate with uniform suction (or injection) a(pu)/ax + @pu)/Jy = 0 (1) 
and uniform wall temperature. Assuming p - T 
and Pr = 1, they showed that the equations pdu/ax + pvat.i/ay = pIllI du,/dx 

could be transformed into those for incompres- + aiaY(paul+) (2) 
sible flow. The asymptotic suction solutions for 
compressible flows have already been noted 
[22-241. Fhigge-Lotz and Howe [29] have 
applied a finite-difference method for calcula- 
tions of the compressible laminar boundary 
layer with suction (or injection) over hot or 
cold walls with and without a pressure gradient. 
Gribben [30] has shown that for Pr = 1 and 
p - T, the axisymmetric equations for a given 
compressible flow with zero heat transfer and 
suction or injection can be transformed into an 
incompressible two-dimensional flow with a 
determinable main stream and normal wall 
velocity distribution. He also showed that with 
heat transfer, a high-speed flow can be cor- 
related with a low-speed compressible flow. 
Pechau [31,32] has recently extended Schlicht- 
ing’s integral method [S] in conjunction with 
an approximation of Truckenbrodt, to com- 
pressible flows with zero heat transfer. 

In the present study, in addition to presenting 
a method of analysis of the compressible laminar 
boundary layer with suction, the results for 
flow with a linearly diminishing external 
velocity are given in detail, including separation, 
minimum (“critical”) uniform suction to pre- 
vent separation entirely, approach of the solu- 
tions to the asymptotic suction profiles for 
large suction, and Mach number and heat- 
transfer effects. Also included in the present 
analysis is a class of mathematically relativity 
simple (“constant-c”) solutions in which the 
pressure gradient may be arbitrarily prescribed, 
but the suction distribution then becomes 
automatically determined, and which include 
as a special case the similarity flow over a flat 
plate with v, - x-+. 

2. BASIC EQUATIONS 

The continuity, momentum and thermal 

puc,aTlax + pvc,aT/ay = a/ay(kaT/ay) 

+ p(adaY)2 - p~u,W,/Wu. (3) 

From the ideal gas law, together with the 
boundary-layer equation aplay = 0, it follows 
that 

PIP, = T,/T. (4) 

The coefficients of specific heat, and the Prandtl 
number Pr, will be assumed as constant, with 
Pr = 1 eventually, while the viscosity coetIicient 
,n will be assumed as proportional to the 
absolute temperature in the form [34] 

plclm = JWK,) (5a) 

where K is chosen to satisfy the Sutherland 
relation at the wall : 

K = [(L + W(T, + 81 (T&J+. (W 
In this analysis the wall temperature T, will be 
assumed uniform; hence K will be constant. 
For a constant Prandtl number, equation (3) 
may be replaced by the equation [2] : 

Pr[ptdHlax + pvaff/ay] = a/aybaHjay) 

- (1 - Pr) a/ay(puau/ay). (6) 

It will be convenient to introduce the (Dorod- 
nitsyn) variable t defined by 

y = i (T/T,) dt. (7) 

If a common moment’m and thermal boundary- 
layer thickness is assumed, equations (2) and 
(6), in conjunction with equations (l), (5a) and 
(7) may be integrated with respect to y over the 
boundary-layer thickness to yield [3] : 

(F3 - 4 (8) 
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&F,X+ bh+($+$)F+ 
For the case of Pr = 1 and uniform wall 

temperature (h’ = 0) the seventh degree stagna- 

= $$z:[Fs - Pr(l - h)c] 
tion enthalpy profiles and the sixth degree 

(9) velocity profiles satisfying the above conditions 
4, are : 

where 

c = (l/K) (To/T,) cp %/a. 

An approximate solution to the 

H/H, = h + (1 - h)(35rj4 - 84~~ + 70@ - 201’) 

(10) + b,(q - 2@4 + 45q5 - 36@ + loyt’) 

basic set of 
partial differential equations can now be ob- 

- (c/2) b,($ - lo+ f 2Orj5 - 15r16 + 4rj7) 

+ (c2/t;) b,(q3 - 4q4 + 6q5 - 4q6 + $7’) (12) 

tained by assuming the velocity and stagnation 6 
enthalpy as definite functions of t, with certain UlUl = z: ailli 

parameters as unknown functions of r required 
i= 1 

to satisfy equations (8) and (9). In this analysis, 
where 

sixth degree velocity and seventh degree stagna- 
tion enthalpy profiles will be chosen to satisfy 
the following boundary conditions : (120 + A[12 - c + (b~/h)]~/~c’ 

Atq = 1: 
u/u, = 1,. H/H, = 1 

a(ufu~)/a~ = a2~ufu~)/a~2 = a3(+4,)/a$ = 0 

a(~/~~)/a~ = az(H/~~)/a~z 
= a3(fz/W,ya~3 = 0. 

Atq = 0: 

U/Ul = 0, H/H, = h 

- ca(u/u,yatj = A -t az(t4/u,)/a+ We) 

- cha2(ufu~)/a~2 = ha3(u/u~)/a~3 

a 
2 

= _ 60~ + A[30 + (b,c/2h)] 

2 - 12c + 60 

- 1% + 60) 

(13b) 

(1%) 

(13d) 

+ AWIH,Mrl WI 

- c&T’~,)/atl = W’W’WW’av12 (1 lg) 

~~u/ul)/a~ - ca2(H/Hl)/a~z 
= (l/F?) a3(H/H,)/aq3 

- co - prl/w @:/HI) ~3a(~/u~)/~~ 
x ~2wmw - (l/h) CWWW~d 

x ra(u/u~~/~l2~. WI 
Equations (lle) and (llg) follow, respectively, 
from equations (2) and (6) evaluated at the 
wall, with u = v,(x) there, while equations (llf) 
and (llh) follow by ~erentiat~g equations 
(2) and (6) with respect to r,~ and evaluating the 
resulting terms at the wall (cf. [2, 3,35]). 

A = (l/~)t~,/T,)@l/~,)(T,/T,)oil (134 
With these profiles, the explicit expressions for 
F, to F, are found to be: 

F, = O-10934 + [OGO2109 - OGOO4126c 

+ 0~7~(Ab~/h) - 0.~5 (AbI/h)c]az 

- [0GOO6216 - 0~0001528~ 

+ 0~OWO095c2] af - [~~2~3 

+ OGIOOO24 (Ab,/h)] (AbJh) (14a) 

F, = F, + (+)(l + h) - O-71429 

+ (@ON05 - 0~00238lc)a, + (0.10714 

- @0119Oc + 0~000595~~) b, 

- 0@01190 (Ab,,‘h) S4W 
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F, = ul; F, = h, (l&l After the differential equations have been 

F4 = (1 - h) [0.24603 - (0.01496 solved, the desired boundary-layer properties 

0GI1806c) a, + 0GIO903 (Ab,/h)] 
can be straightforwardly calculated. For 
example, the local skin friction coefficient, 

h,[0.06835 - (0.003247 - OGOO4l lc) a, Nusselt number, momentum thickness and 

OGIO205 (AbJh)] - b,c[OGI8381 displacement thickness will be, respectively : 

(OGM339 - 0~000044c)u, (pauiay), 
OGOOO22 (AbJh)] - b,cZ[O~000441 c’ = (f)p,r& 

= 2~U’(PRe-’ (19) 
rl: c 

(OGMOl6 - OTMOOO2lc) u2 b,cp 
+ O0MOOlO (Ab,/h)]. (144 

Nu ~ (kaT/ay),L ~- 
k,(T, - T,) = (I-h)cRe* 

(20) 

With profiles and expressions for F, to F, 
such as the above, equations (8) and (9) become 
two ordinary differential equations in i.(t) and 
b,(c). For a permeable wall with suction it is 
often convenient to express equations (8) and 
(9) with c(r), instead of i(t), as an unknown. 
Thus, 

=-_---‘* ~- ..- 
(16) 

For zero heat transfer at the wall, the solution 
of the energy equation (6), for Pr = 1, is H = 
constant, whence the following well-known 
relation between the temperature and velocity 
is obtained for this case: 

T/T, = 1 + [(y - 1)/2]M:[l - (u/u,)‘]. (17) 

From equation (17) it will follow that in this 
case h = 1. For the more general case of heat 
transfer, the temperature profiles can be ob- 
tained from the stagnation enthalpy and velocity 
profiles by means of the relation 

T/T, = (H/H,) (1 + [(r - 1)/21 M:) 
- WJ2 [(Y - 1)/23 w. (18) 

= Ki [mF, - :Fj Re-+L. (22) 

From equations (19-22) 

(N&R,) = [br/2(1 - &rl (U&r) (23) 

S*/tI = (FJFJ m(T,/T,) - 1. (24) 

According to equation (7) the transformation 
back to the physical (x, y) plane can be made by 

(y/L) Ref = J;. [(T/T,) dq. (25) 

For the (isentropic) flow at the local outer edge 
of the boundary layer, the following relations 
hold : 

T/T, = 1 + [(Y - 1)/23M2,[1- hl~,,‘~ 

PI/P, = (T,IT,)“~y- “; (264 

M: = M;(u~/u,)~ (T,/T,)-‘. 

From these relations, the following useful 
relation may be readily derived : 

1 + [(r - 1)/23 M: = { 1 + [(r - 1)/21 M: ‘, 
x WT,). (26b) 
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3. FLOW OVER A FLAT PLATE 

For the special case of zero pressure gradient 
(such as flow over a flat plate at zero angle of 
attack), in which ui/u, 3 T,/T, E 1, u; ES 0, 
A ZE 0, the foregoing equations simplify con- 
siderably. First, the results obtained by the 
equations given here will be compared with 
certain exact (numerical) solutions. Then it 
will be shown that the solutions for compressible 
flow with heat transfer can be readily obtained 
here from the solutions for incompressible flow. 
(This is also in accord with exact analyses.) 
Finally, a comparatively simple method will be 
given for calculating the boundary layer over a 
flat plate with a prescribed distribution of 
normal velocity u,(x) along the wall and a 
prescribed uniform wall temperature. 

For flow over a flat plate, since A = 0, 
equation (13b) reduces to : 

a, = 12O/(c2 - 12c + 60). (27) 

Case of homogeneous suction 
For incompressible flow over a flat plate with 

u, = constant, equation (15) can be reduced to 

(cF, + c2 dF,/dc)c’ = cp2(a, - c) (28) 

where cp is constant. Since with A = 0, F1 will 
be a function of c only, equation (28) can be 
solved for 5 vs. c by separation of variables 
and a quadrature. However, as will be seen, the 
range of c here will be 0 6 c < 4644, and for 
this range, it will be found that F, is virtually 
constant. Hence the calculations can be simpli- 
fied here still further by replacing F,(c) by a 
constant “average” value F, for the flow. The 
solution of equation (28) in conjunction with 
equation (27), with c = 0 at CJ = 0, is then 
found to be: 

(p25 = F, { - c - 9.060 In [l - (c/4644)] 

+ 4.530 In (1 - Cc(7.356 - c)/25.84]) 

+ 2.496 (0.8089 - arctan C(7.356 

- 2c)/7*018])}. (29) 

From equation (29), 2rp25 E c2 can be readily 
calculated as a function of c. For the case 

d * co (asymptotic suction solution) it is seen 
that c = 4644. Exact (numerical) solutions for 

FIG. 1. Comparison of calculated profiles and their deriva- 
tives with exact (numerical) solutions. Incompressible flow 

over a flat plate with uniform suction. 

the homogeneous suction case have been cal- 
culated by Iglisch [17]. The results of the 
equations developed here for the velocity pro- 
files and their first derivatives (to which the 
local skin friction is proportional) are com- 
pared in Fig. 1 with the exact solution for 
cr = 0.1, 1.0 and co, and the agreement is seen 
to be satisfactory throughout. The agreement 
with the exact asymptotic suction profile (a + 
co) is especially noteworthy in view of the fact 
that the velocity profiles were chosen here 
simply as (sixth degree) polynomials, without 
attempting to match them in advance with the 
known exact (exponential) asymptotic profile. 
Moreover, this agreement is particularly im- 
portant since both the exact solutions [24] and, 
as will be seen subsequently, the approximate 
solutions developed here, approach essentially 
this same asymptotic solution when V, --f - co 
even in the presence of a pressure gradient and 
a variable u,(x). 

Case of v, - x-+ 
Consider now the special case of incompres- 

sible flow along a flat plate in which u,(x) is 
such that c is constant along the flow. Then F, 
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will also be constant, and equation (8) reduces to 

2 = (2/F,)@, - c) (30) 

where a, is given by equation (27). With the 
condition A = 0 at 5 = 0, the solution of 
equation (30) is 

1 = (2/F,) (a1 - c)5. (31) 

From equation (lo), 

c = ij92/;1. (32) 

Eliminating 1 from equations (31) and (32), it 
is found that 

- t&+, = c {,&IC2(a, - c)l> R;+. (33) 

and STANLEY P. REYLE 

Equation (33) shows that u,(x) - x-4. In this 
case, the original partial differential equations 
can actually be reduced exactly to an ordinary 
differential equation, and exact solutions for 
this case have been calculated [25-271. The 
equations obtained here can be used to cal- 
culate velocity profiles, displacement and mo- 
mentum thicknesses, and skin friction for any 
values of 
01 = (-e,Iu,) R: = c {&/[2(~, - c)]). (34) 
Equation (34) yields c vs. cl. Figures 2 and 3 
show the satisfactory agreement of the results 
calculated here with those of exact solutions for 
all values of rrl calculated. 

+ THWAITES C261 

FIG. 2. Comparison of calculated velocity profiles with exact (numerical) 
solutions. Incompressible flow over a flat plate. Suction velocity -x-t. 

20 100 

- FftESEM METHOD 

THWAITES 1261 

FIG. 3. Comparison of calculated distribution of cs, 6* and 6’ with exact 
(numerical) solutions. Incompressible flow over a flat plate with suction 

velocity -x-*. 
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It should be noted that although exact 
(numerical) calculations for suction have been 
carried out only for 0 < o1 < 10, the equations 
developed here can be used for the entire 
suction range 0 < or < 00. In fact, correspond- 
ing to o1 --, cc, c is such that a, - c = 0, 
whence c = 4644. This is the same value of c 
as that corresponding to the asymptotic suction 
profile for the case of homogeneous suction. 
Moreover, for the present incompressible flows, 
equation (32) and the definitions of r1,.1 and cp 
imply that q = (l/c) (- poou,y/p,). Consequent- 
ly, since the ai are here functions of c only and 
u/u1 is given by equation (13a), the approximate 
solution developed here implies that in the 
asymptotic case (or + cc), the velocity profile 
u/u1 for the case u,(x) N x-* will be exactly the 
same function of (-p,u,(x)y/& as in the 
case of homogeneous suction. This is in exact 
agreement with the implications of the asympto- 
tic suction profiles [ZO, 21, 241. 

General solution for compressible j7ow with heat 
transfer and arbitrary u,(x) 

For the general case of compressible flow 
over a flat plate with a prescribed uniform wall 
temperature, equation (15) can be written in the 
form 

(cF, + cz dF,/dc)c’ = (cp’/K) (al - c) 

+ F1c2(cp’lcp) (35) 

where F, and, in fact, all the coefficients a, in 
the velocity profile, are functions of c only. 
Equation (35) for c(r) is the same as the cor- 
responding equation for incompressible flow 
with a mass flow parameter Cpi given by 

cPitx) = dxYJK* (36) 

Thus c(5) will be the same as for an incompres- 
sible flow with a mass flow distribution given 
by equation (36). Therefore the velocity profiles 
for compressible flow with a given uniform 
wall temperature T, and a prescribed normal 
mass flow distribution q(x) will be the same 
functions of 5 and q as those for incompressible 

flow with a normal mass flow cp(x)/JK, where 
K is a constant, given by equation (5b). 

For the case considered here, the solution for 

b,(5) is 

b, = (1 - h)a, Wa) 

where al is given by equation (27). Hence, 

bl = 120(1 - h)/(c2 - 12~ + 60). (37b) 

Equation (37a) can be verified by noting that 
with A = 0 and equation (37a), equations (14a) 
and (14d) imply F4 = (1 - h)F1. Then, sub- 
tracting equation (16) from equation (15) and 
using this relation yields in this case an equation 
which, with h constant, is identically satisfied 
by equation (37a). 

With equation (37a) and A = 0, it is found 
that equations (12-13d) imply 

H/H, = h + (1 - h)(u/u,). (38) 

As a check, it is noted that equation (38) is 
also implied exactly by the original partial 
differential equations (2) and (6) for flow over a 
Qflat plate with Pr = 1 and a uniform wall 
temperature. From equations (38) and (18) 
it follows that the temperature profiles will be 

(39) 

According to equations (19), (23), (27) and (37) 
the local skin friction coefficient and Nusselt 
number can be found from 

cf Ref = 240 q/[c(c2 - 12~ + 60)] (40) 

Nu/(cfRe) = $. (41) 

After c(5) has been found, the velocity and 
temperature profiles in the (<, q) plane can be 
found from equations (13) and (39) with A = 0. 
Profiles in the (x, y) plane can then be found 
from equations (25) and (10). 
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It now remains only to find c(c) for the 
general case. For this purpose equation (35) 
can be written in the form 

2’ = fi(h 2) (42a) 
where z = c2, or c = Jz, and 

fi(t, z) = 2 CV2(‘l - ‘)lKl + IF1cZV’lVl. (42b) 
F, + cdF,/dc 

Moreover, at(c) is given by equation (27), and 
F,(c) by equation (14a) with A = 0. Equation 
(42a) is a first-order ordinary differential equa- 
tion which, for prescribed differentiable non- 
zero (p(t), can be solved numerically without 
difficulty by any of the well-known standard 
techniques. The initial condition is ;1 = 0, and 
hence (for a finite ip at the leading edge) z = 0, 
at g = 0. 

In most cases, F,(c) will be virtually constant 
and hence in equation (42b), F, may be replaced 
by a constant “average” value, with dF,/dc 
replaced by zero. The calculations then become 
even simpler. 

4. METHOD OF SOLUTION FOR PRESSURE 
GRADIENT WITH ZERO HEAT TRANSFER. 

LOCATION OF SEPARATION POINT 

In this section the method of solution of 
the equations here will first be given for the 
general case of a pressure gradient without 
heat transfer in which the suction mass flow 
distribution at the wall is prescribed. Then a 
mathematically simple class of solutions, namely 
those for which c = constant, will be discussed. 
A method for locating more accurately the 
separation point in an adverse pressure gradient 
will then be described. Finally, a simplified 
approximate method of solving the ordinary 
differential equations here will be shown. 

For zero heat transfer and Pr = 1, it has 
already been noted that h = 1, while the tem- 
perature profiles can be found from the velocity 
profiles from equation (17). Moreover, since 
in this case (8I’/ay), = 0, it follows from 
equations (18) and (12) that b, = 0. It is there- 
fore necessary only to solve a singIe differential 
equation, namely the momentum equation (8) 
or (15). 

Prescribed distribution of suction velocity 
With (p(5) prescribed, it is first noted from 

equation (14a) with b, = 0 and h = I, that 
F, = F,(c, az) while according to equation 
(13d) a2 = a2(c, A). Hence, 

F; (43) 

Using equation (13e) for A, equation (15) can 
then be written in the form 

c’ = NiD, = fi(5, c) (44a) 

where 

+2K@iP1 Gc(?a, ~poou, C?A ’ 
ww 

For a given uJu,([), M, and q(t), N,/D, is 
an explicit function of c and c. Thus the first- 
order differential equation (44a) can be solved 
by any of the standard techniques for such 
equations. For a sharp leading edge with finite 
suction the initial condition is c = 0 at 5 = 0. 
Consequently, c’ will be infinite initially. This 
diITiculty can be overcome by writing equation 
(44a) in the form 

d5ldc = &/N, =f&, 5) 

and solving this equation for 5 vs. c.? 

(44d) 

t Another possibility is to introduce z = c2, c = Jz, and 
write equation (44s) in the form 2 = f,(F, 2). This. however. __.-- , , 
will in6oduce square-roots in many places here. In con- 
nection with equation (4kQ it may, in practice, be found 
necessary to decrease the increments in c near the end of the 
calculation. 
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Class of solutions for which c = constant 
The ordinary differential equations here be- 

come simplified in the class of cases for which 
the solutions are such that c = constant. The 
pressure gradient [or u,/u,(<)] is here con- 
sidered to be prescribed, but the required suc- 
tion distribution cp(<) must then be determined. 
The quantity of suction may be prescribed by 
prescribing the value of c. This class of solutions 
is a generalization to non-zero pressure gradients 
of the case, considered in Section 3 and in- 
cluded in the present class as a special case, of 
flow over a flat plate with u, N x-*. 

For c = constant, equation (8) with the use 
of equations (43) and (13e) can be written in 
the form 

where 
,I’ = N,/& = fs(<, 1) 

D, = & + !!! T, _-__>~. (3 2 p1 u; dF, aa 

K T p,td,Ba,aA 

(454 

(45’4 

(45c) 

Again, for a sharp leading edge, 3, = 0 at < = 0 
and equation (45a) can be solved by standard 
techniques. After A((5) has been thus obtained, 
the suction distribution follows from equation 
(10): 

(~(5) = Kc(T,IL)/&. (46) 

Location of separation point 
The separation point is assumed to occur 

where (au/Q), = 0, and hence where a, = 0. 
With b, = 0, equations (13b) and (13e) imply 
that for zero heat-transfer separation occurs 
where 

(12 - c) c2 = - (120/m) (P,/PI) km/u;) (l/K) ‘p2- 

(47) 

Thus, if, for example, (p(5) is prescribed then the 
separation point according to these equations 
is found by first obtaining c(5) as described 
above, and then finding the value of 5 for which 
equation (47) holds. This procedure is based 
on the use of sixth degree velocity profiles. It 
has, however, been found [38] that although 
sixth degree profiles give more accurate results 
for the location of the separation point than 
the usual fourth degree profiles, they may still 
yield appreciable errors. Considerably increased 
accuracy can be obtained by using for this 
purpose (and essentially this purpose only) 
seventh degree profiles [9, 36, 371 satisfying an 
additional condition at the wall at the separa- 
tion point. This condition, obtained by dif- 
ferentiating equation (2) twice with respect to rj 
and taking values at q = 0 at the point where 
(au/all), = 0, is? 

a2 u 
XT-- 

arl Ul w’ O! (48) 

The seventh degree velocity profile satisfying 
condition (48) in addition to conditions (1 la-h) 
is 

u/u1 = i aiqi (4W 
i=l 

where 

al = (2) + [(-3) + (c/15) + (r/240)] a, 

+ (AW(3Oh) (49b) 

a3 = - (ca,P) - (&)/(6h) 

a4 = - (r/12) a, 

a5 = - (21/4) + [(-3) + c + (3r/16)] a2 

+ (AWl(2h) 

a6 = 7 + [3 - (16c/15) - (3r/20)] a2 

- (8-W/(15h) 

a7 = - 3 + [( - 1) + (c/3) + (r/24)] a, 

+ (Ab , )/tW (49c) 

t In obtaining equation (48) it has been assumed that a 
term proportional to (&/a~), (&~/k?yX, will be negligible 
close to and at the separation point (cf. the discussion in [38]). 
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6, c + 2&l + (b,c)/(3Oh)l 

az = - 4 - c + (c2/120)[16 - c + (2b,/h)]’ 

(49d) 

The stagnation enthalpy profiles remain as 
in equation (12). Equations (49a-d) are useful 
not only as a means for locating accurately 
the separation point, but may be useful also to 
calculate accurately the velocity profile at that 
point. 

The explicit expressions for F, and F2 now 
become : 

F, = 0.1156 + [0%X)253 - OGOO887c 
- 0.0000850r + (OGOO287 - 0.0000572~ 

- 00000043r) (Ab,/h)] a2 

+ [- 0*001454 + 0*000574c 

- OM100572c2 + 0GOOO432r 
- 0GOOOO85rc - 0GMOO03r2] af 

- [0MMM44 + 0*0000143(Ab,/h)] 

x (AM) (50a) 

F, = F1 + &l + h) - 0.6875 

+ [0*02976 - OGO595c - 0*000446r] a2 

+ [0*1071 - 0~01190c + 0*000595c2] bl 

- OX)02976 (Ab,/h). (50b) 

The separation point can now be calculated 
as described previously, except that the im- 
mediately-above expressions are now to be 
used for a,, a,, F, and F,. Thus equation (8) 
must be solved for L(t), or equation (15) for 
c(t), using equations (49) and (50), and the 
separation point is now the point where 
a, = 0 according to equation (49b) and hence, 
in the case of zero heat transfer (h = 1, b1 = 0), 
where 

c2[15 - 2c + (c2/8)] = - (105/m) (p,/pJ 

x (%&) (UK)‘cp2. (51) 

Condition (51) replaces condition (47). 

Simplified approximate solution of equations and 
simplified determination of separation point 

Although the procedures just’ shown for 

and STANLEY P. REYLE 

solving the ordinary differential equations ,are 
essentially straightforward, it is possible to use 
simplified approximate procedures for solving 
these equations in the manner to be shown here. 

For most cases, it will be found that F, 
remains virtually constant along the flow. 
Consequently F, may be replaced by a constant 
“average” value, F,, with F; set equal to zero. 
Such an approximation has already been made 
for flows over an impermeable wall [2] and 
flows with injection [3]. Noting that a, is of 
the form a, = a, + fi,A, and using equations 
(26), equation (15) can then be written in the 
form 

2 ‘p2 Tl +--lu4) 

“‘=Kz T, 0 
<(a1 - Jz) 

T Ul 
2 

()(dl -z- 

’ Tl u = f&5 4 (52) 

where 

al = 120/(c2 - 12~ + 60), 

@, = F, + F, - Plh (53) 

/.?lh = [(12 - C)h + b,]/[C2 - 12c + 601. 

Equation (52) is considerably simpler than 
equation (44a). 

With F, = F,, equation (8) similarly reduces 
to: 

1’= 

+ 

(54) 

Equation (54) is useful, for example, for cases 
of an impermeable wall (c = 0) and for the 
class of solutions for which c = constant. In 
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connection with the latter class it is seen that types of approximation can again be fruitfully 
equation (54) is considerably simpler than made. In particular F, may be replaced by a 
equation (45a). constant value F,, its value at the separation 

In addition to setting F1 = constant, there point.? Such a procedure has already been 
is a possible further simplification, namely to found to lead to accurate results for an imperme- 
also set F, = constant. Such an approxima- able wall [9, 361. With F, replaced by Fls, 
tion has been made to good advantage for an equation (52) remains valid, but with F, re- 
impermeable wall [2] and for a transpiration- placed by F,, and with ar, /II, @r replaced, 
cooled wall [3]. However, although F, does respectively, by a*, fiz, and G2, where 

a, = 7/{4 - c + (c2/120) [16 - c + (2b,/h)]}, Q2 = F,, + F2 - &h 

/Y2h = {h - (c/120) [(16 - c) h + 2bJ + (2b,/15))/{4 - c + (c2/120) [16 - c + (2b1/h)]}.(56) 

vary to only a limited extent, it will be found 
that F, will vary appreciably more than F 1 
in cases of suction. Moreover, replacing F, 
by a constant (“average”) value in equation (52) 
will not greatly simplify the equation. It is 
noteworthy, on the other hand, that for the 
special class of solutions for which c = constant 
the replacement of F, by a constant value F, 
will make equation (54) linear in 3, and hence 
will yield the following relatively simple closed- 
form solution : 

where 3, = F, + F, - /.?,h. Although equa- 
tion (55) will be subject to some quantitative 
errors, it should be noted that equations (55) 
and (46) afford a rather simple class of approxi- 
mate solutions for compressible flows with zero 
heat transfer in an (essentially arbitrarily pre- 
scribed) pressure gradient with (an implicitly 
determined distribution of) suction. 

The foregoing simplified procedures apply 
for calculating properties of the boundary 
layer prior to separation, and are based on the 
sixth degree velocity profiles. For a more 
accurate location of the separation point based 
on seventh degree velocity profiles, the above 

4K 

Thus equation (52) in conjunction with equations 
(56) must now be solved for z(s), whence 
c(5) = ,/z is found, and the separation point 
obtained by finding the value of < for which 
equation (51) is satisfied. The calculations will 
be comparatively simple and straightforward. 
A basically similar simplified procedure for 
determining the separation point for the con- 
stant-c class of solutions can be readily developed. 

As in the calculation of properties before 
separation it is possible, in calculating the 
separation point by the seventh degree profiles, 
to add the simplifying approximation of re- 
placing F, by F,, its value at the separation 
point. As explained previously, such an addi- 
tional approximation appears of doubtful worth 
for flows in which the suction distribution is 
prescribed. For the constant-c class of flows, 
however, it is again noted that with such an 
additional simplification, the closed-form solu- 
tion for n(t) given by equation (55) will hold, 
but with CQ, /II, ?!I1 replaced by a2, /12, 3,. 

In general, after the solutions (whether for 
separation or prior to separation) have been 
obtained by the simplified approximate pro- 
cedures described here, an indication of their 

t A rough value, c, of c at the separation point may in 
general be obtained in advance by estimating a rough 
value, &, of 5 at which separation may occur, evaluating 
the right side of equation (51) at this l, and then solving 
for c. This may then be used to evaluate F,, which will be 
relatively insensitive to the values of c, and 5,. 
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accuracy or reliability can be obtained by 
calculating F, (and, if pertinent, F,) with these 
solutions and seeing how widely it actually 
varies.t 

5. PRESSURE GRADIENT WITH HEAT TRANSFER 

The comparatively general case considered 
in this section is that of a prescribed uniform 
wall temperature in a given pressure gradient 
with suction. In this case a constant value of 
h (not necessarily one) is prescribed. The equa- 
tions for this case are now considerably more 
complicated because of the appearance of an 
additional unknown, b,(r). Equations (15) and 
(16) must now be solved simultaneously for 
A(<) and b,(r). The present study will be confined 
to indicating and applying a very approximate, 
but comparatively simple, method of solution 
of the equations with heat transfer. The method 
will be similar to that shown and applied for 
an impermeable wall [2,35] and a transpiration- 
cooled wall [3]. 

In equations (15) F1 may still be replaced by 
a constant value F,, with F; = 0. Moreover, in 
F2 and u1 (as well as in F, and a& bl may at 
first be replaced by an approximate value 6,. 
In the case of a sharp leading edge the value for 
6, here might be taken to be the expression for 
bl for flow over a flat plate, as given by equation 
(37b). Equation (15) then becomes uncoupled 
from equation (16) and can be solved separately. 
In fact, equation (15) is reduced to equation 
(52), and the numerical solution of this equation 
then proceeds quite similarly to the case of 
zero heat transfer, except that one must now 
take into account the bl terms in G1, and insert 
the given value of h (instead of h = 1) wherever 
it appears. To solve equation (16) approximately 
for b,(r), set Fk = 0 with F4 replaced by a 
constant “average” value F,. Subtracting equa- 
tion (16) from equation (15) the following 

t It should be kept in mind that the method described 
here of determining the separation point by the use of 
seuenth degree velocity profiles is predicated on the assump- 
tion that separation will indeed occur. cf. the example in 
Section 7. 

equation is then obtained : 

V’, - B,NWN = a1 - c - [b, - (1 -h)c] 

x (VU (57) 

With equations (14b) and (53) for F,, /II, and 
a,, equation (57) is a linear equation in b, 
whose solution is 

where 

b,(C) = N,lD, (58) 

N, = 

-; F, +;(l +h)-0.7143 
[ 

30(0*01905 - 0*00238c)(2c + A) + (12 - c)h - 
C2 - 12c + 60 1 

- 0.01191~ 

+ o*OO0595c2 - oGO119; 

(0*01905 - OQO238c) (Ac/2h) + 1 - 
c2 - 12c + 60 I. 

Equation (58) may be used to obtain (at least 
roughly) heat-transfer properties. 

The separation point can be located in a 
manner quite similar to the simplified method 
described for zero heat transfer. Equation (52) 
must be solved for z(r) inserting now the given 
value of h in the expression for a2 and a2 as 
given by equations (56) and (5Ob), and also 
inserting as an approximation for bl its value 
for a flat plate (assuming a sharp leading edge) 
as given by equation (37b). A further simplifica- 
tion can be made by replacing F2 here by a 
constant value F2,, its (estimated) value at 
c = c, After ~(0 has been thus obtained the 
separation point can be found approximately 
by determining the value of < at which al as 
given by equations (49b) and (49c) [with b, 
there given by equation (37b)] vanishes. 

The procedures outlined here can also be 
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readily adapted to the constant-c class of 
solutions with heat transfer. 

6. ASYMPTOTIC SUCTION SOLUTIONS 

It was shown in [24] that under quite 
general conditions, in the limiting case of 
infinite suction, i.e. cp + co, the exact solutions 
of the original partial differential equations 
for u/u1 and T/T1 as functions of r and M, 
approach the asymptotic suction solutions for 
flow over a flat plate. It will be shown in this 
section that such will also be the case with the 
equations used here. Since it has already been 
shown that in the asymptotic case of rp -+ co 
the equations used here yieki results in good 
agreement with the exact solutions for incom- 
pressible flow over a flat plate, and since the 
effect of compressibility for flow over a flat 
plate according to the equations used here is 
in accord with exact solutions, it follows that 
the basic equations used here, namely equations 
(15) and (16) in conjunction with the sixth 
degree velocity profiles and the seventh degree 
stagnation enthalpy profiles, will yield results 
in satisfactory agreement with exact solutions 
for compressible flows with pressure gradient 
(and heat transfer) when the suction parameter 
cp is large, This is, of course, an important 
further check on the accuracy of the equations 
used here. 

To show that according to the equations 
used here the solutions for the velocity and 
temperature profiles (in terms of I and M,) will 
approach those for flow in a zero pressure 
gradient when Q, + co, consider a solution in 
which, as cp --+ co, d -P 0 and hence by equation 
(13e) A + 0. It is then seen from equations 
(14ad) that in this limit the expressions for 
Fr to F, in terms of c and b, remain the same 
as for flows without a pressure gradient. 
Moreover, if one brings the braced term in 
equation (15) to the right side, and considers 
Q + co with c remaining finite and therefore 
c’ approaching zero, then the equation obtained 
in this limit is that which will result by setting 
the new entire right side of equation (15) equal 

to zero. However, cp + co, the cp2 term there 
will predominate, and hence in the limit this 
right side will vanish if and only if (ai - c) = 0. 
Using equation (13b) with A = 0, this will lead 
to exactly the same (fmite) value of c as for the 
asymptotic suction solution for flow over a flat 
plate. It then follows from equations (13a-e) 
that the velocity profiles u/u1 will be the same 
~n~ions of 1 as for the flat plate flows. By 
similar reasoning it is seen that equation (16) 
in the asymptotic case reduces to the equation 

b, = (1 - h) c, which is the same as the equation 
which would be obtained for flow over a flat 
plate. Thus, the basic equations used here 
imply that as v, + co the velocity and stagnation 
enthalpy profiles r&i and H/H, will tend to 
the same functions of q as for flow without a 
pressure gradient. In particular, equation (38) 
will hold Now, according to an exact analysis 
[24] ZA/U, must remain the same function of [ as 
for flows without a pressure gradient. where 

If ~1 is assumed to vary according to equation 
(5), then it is found from the definitions that 
rl = (l/c) c. Hence the result obtained hem for 
the velocity profiles is in accord with the exact 
asymptotic solutions. Moreover, equation (18) 
here, and equations (11) and (15) of [24], 
imply that for Pr = 1 the exact asymptotic 
temperature profiles will be such that equation 
(38) wiII hold, and this is also the case with the 
approximate equations used here. It may be 
noted that the entire discussion here holds for 
a variable, as well as a uniform, suction para- 
meter (p(4). 

An important corollary of the fact that the 
velocity profiles u/n1 (in the variable r) in 
general tend to the flat plate profiles as rp + co 
is that in any given (finite) adverse pressure 
gradient it should always be possible to entirely 
prevent separation by a su&ient amount of 
suction.? This statement holds for the general 
~.. --_- 

t A quite recent illustration of this is afforded by the 
similarity solutions of Zamir and Young [41]. 
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case of compressible flows with or without 
heat transfer. 

7. FLOW WITH A LINEARLY D~NI~~~ 

EXTERNAL VELOCITY 

To see explicitly the nature of the solutions 
and the effect of suction in an adverse pressure 
gradient, the equations and procedures de- 
veloped here have been applied to the case of 
an external flow characterized by 

111/u, = 1 - 5. (59) 

As already explained, the class of solutions 
for which c = constant are relatively easy to 
obtain, but the co~es~nd~g suction distribu- 
tion is determined, instead of prescribed. For 
an external flow given by equation (59) and zero 
heat transfer, equation (45a) has been solved 
for various constant c for 0 < c < 3. The 
results obtained for the momentum thickness 

FIG. 4. Distribution of moments thickness and skin- 
friction for constant-c solutions. q/u, = 1 - 5; zero heat 

transfer. 

and skin-friction distribution are shown in 
Fig. 4 for M, = 0 and M, = 410. The cor- 
responding suction distributions are shown in 
Fig. 5. In addition, the separation points have 
been calculated on the basis of the seventh- 

-~_- _______..____ 
t This is the one case encountered herein in which the 

seventh-degree profiles lead to a later separation point 
than the sixth-degree profiles. 

degree velocity profiles. with the results: 5, = 
0.173 and 0*37q for c = 1 and c = 3, respec- 
tively, when M, = 0, while 5, = 0,145 for 
c = 1 and M, = ,/lO. For c = 3 and M, = 
,/lO, separation apparently does not occur 
(due to the large suction associated with this 
case, cf. Fig. 5). As a check on the simplified 

4' -__ -... 
-Mm=0 

I 
3/ 

;+I ____M, =a 

\ 

: 

I I I 

FIG. 5. Distribution of mass flow parameter cp(<) for 
“constant-c” solutions. 

method based on a constant F,, equation (54) 
was solved for these cases, and the results were 
found to remain very close to those shown here. 

Solutions for unqorm suction and incompressible 
ffow. Separation. Critic44 suction velocity 

The results obtained here for cp = constant are 
of considerable physical interest, and will be 
discussed in some detail. 

First, solutions obtained for incompre~ible 
flow for the displacement and momentum 
thickness, and the skin-friction distributions 
are shown in Figs. 6 and 7 for various values 
of cp. For this purpose equation (44d) was fast 
solved for cp = O-1 and 0.5, and then equation 
(52), based on the simplifying approximation 
of a constant F, along the entire flow, was 
solved. The results were found to be practically 
identical. In all of the remaining calculations 
the procedure based on a constant F, was used. 
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RG. 6. Distribution of displacement and momentum thickness for uniform 
suction parameter cp, u,/u, = 1 - & incompressible flow (M, = 0, h = 1). 

FIG. 7. Distribution of skin friction coefficient for various values of the 
suction parameter. v,/u, = 1 - C, incompressible flow without heat 

transfer. 

In the case of incompressible flow with U&J, = 
1 - < and constant cp, equation (52) can be 
solved by separation of variables with the result 

< = 1 - exp[- F,bf(c)dc] (a) 

where 

f(c) = c/[q*(a, - c) + c*@r]. (60b) 

The results of Head [14] for cf, based on his 
mom~tum-a~d~ner~-~tegr~ method, for the 
case cp = 1 are included in Fig 7, and these 
agree rather- well with the results obtained 
here. 

The results shown here for the skin-friction 
are of especial interest. It is seen that according 
to Fig 7, separation will occur at some point 
if the suction is sufficiently small so that 
rp < 1.461. At cp = l-461, in fact, it is seen that 
at the separation point, dc,,/d< = 0.t For 40 > 
1461 it is found that separation will not occur 
anywhere. Thus, the value cp = l-461, to be 
denoted by rp,, may be regarded here as the 
“critical” value of the suction parameter 43. 

1249 

t This is obtained from the method of analysis used here. 
The actual behavior of the derivative dc,/dc for cp = rp, 
nt. and in a small region near r = 5, according to an exact 
solution may be worthy of investigation. 
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This result can be obtained analytically by 
noting that according to equation (47) separa- 
tion will occur in the present incompressible 
flow where c = c, and 

c,” - 12c,” + 120$ = 0. (61) 

es vs. cp according to equation (61) is plotted in 
Fig. 8, and it is seen that there are no (physically 

c* 

FIG. 8. Variation oft, with suction parameter cp, for ul/u cc = 
1 - 5, incompressible flow and zero heat transfer. 

signiticant) roots for c, when (p > 1461. At 
= 1461 = rp,, it is seen that dcJdtp + co, or 

&,dc, - - 0. The location of the separation 
point 5, according to equations (60) and (61) is 
shown in Fig 9, together with results of Thwaites 
[4] and of Curie [15]. (Thwaites was able to 
obtain results only for cp < 0,833.) Although, as 
previously noted, the results for r, obtained by 
equations (60) and (611, based on sixth degree 
velocity profiles, are subject to some quantitative 
inaccuracy they are of importance in indicating 
the existence of a critical cp and in dete~g 
its approximate value. The existence of such a 
50 has already been predicted (Section 6) here 
on the basis of the general asymptotic suction 
solutions. 

It should be noted that the results for 5, vs. 
Q, giveu by Curle in [15] and shown in Fig. 9 
were based on setting cs = 0 in equation (23) 
of [lS] and solving for <. However, further 
study of this equation, for the purpose of 
calculating the skin-anion ~stributio~ tbere- 

from,? has indicated that for a fixed cp the curve 
of cf vs. < will consist of more than one branch 
(since it is of fourth degree), and that for the 
higher values of the suction parameter (in- 
cluding cp 2 1.2) the branch which contains the 
point for which cr = 0 is a branch approaching 
the r axis from below, i.e. from negative cf, 
and hence from artificial values. The branch 
of positive c1 in these cases does not cross the 
< axis. Thus the curve of Curle near and at 
cp = qrr does not appear to have an entirely 
consistent physical basis, but there is a neverthe- 
less noteworthy similarity between Curle’s curve 
and that obtained by the present procedure. 

From Fig. 9 it is seen that according to the 
results obtained here, 4, has a definite value 
(= 0.438) < 1 for q = cpcr. When cp > q,, 
separation does not occur anywhere. 

To obtain quantitatively more accurate results 
for 4, vs. 9 when cp < qen the procedure based 
on the seventh degree velocity profiles has 
been applied to the flows considered here. The 
results are shown in Fig. 9. The calculations were 
based on F 1 = constant, but calculations for 
p < l-5 without this assumption (see Fig. 9) 
gave very similar results. It should be noted that 
the one value of 5, namely for rp = 1, calculated 
by Head [14] by his method practically coincides 
with that obtained here. The results based on 
the seventh degree profiles are qualitatively 
similar to those based on the sixth degree 
profiles for 0 < cp G 1.3 (roughly), but deviate 
considerably for larger v, and do not yield a 
critical q in the manner described above. For 
cp > 2.21, however, it is found that a single- 
valued solution for c vs. c cannot be obtained 
for all { before any separation. This is probably 
due to the inaccuracy in the seventh-degree 
profiles away from the separation point, due 
to neglecting a term proportional to r&/&z 
in the use of these profiles. The exact curve of 
5, vs. rp may be expected to follow the seventh 
degree curve in Fig. 9 at least for lower tp’s. 

t The authors acknowledge the aid of Mr. Denis Black- 
more in these calculations. 
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FIG. 9. Separation point vs. suction parameter for u,/u, = 1 - <, 

For higher cp’s the exact curve may be expected 
to appear like the sixth degree curve of Fig. 9, 
although further research may be warranted to 
verify this.? 

Approach to asymptotic suction profiles 
To note the approach of the solutions to the 

general asymptotic suction profiles, solutions 
for incompressible flow with u,/u, = 1 - < 
and constant suction were obtained for cp = 3 
and cp = 5. According to equation (19) of [24], 
the asymptotic suction solution for these flows 
will yield 

(c,),+ m = 2&l - <)Re-*. (62) 

It should be noted that equation (62) is also 
implied exactly by equation (19) of the present 
analysis, since for cp --, co, a, - c = 0. Figure 7 
illustrates, for cp = 3 and 5, the approach of 
the present solutions for the skin friction to the 
asymptotic suction solutions. Moreover, to 
contrast the nature of the solutions for cp < cpC, 
and cp > (P_ the development of the velocity 

t An early problem of Prandtl’s [39] and considered, 
for example, recently by Head [13] and by Curie [lS] bas 
been to Iind the quiral suction distribution to maintain 
a zero skin-friction layer, in a flow characterized by equation 
(59X starting at the point (< = @120) at which (&/a~), fast 
vanishes. This essentially initial-value problem is dilfercnt 
from that considered here. 

profiles along the flow is shown in Fig 10 for 
cp = 0.8, 3 and 5. The asymptotic suction 
profile (cp + 00) is also shown here, and the 
approach toward this profile for cp = 5 can be 
clearly seen. 

RG. 10. Velocity protiles for UJU, = 1 - C incompressible 
flow without heat transfer. 

Mach number and heat-transjk effects 
An indication of the effect of compressibility, 

with uniform suction, can be seen in Fig 9, 
which shows the results obtained here (by the 
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seventh-degree-velocity-profile method) for the 
separation point vs. cp for M, = 0 and M, JlO 
with zero heat transfer (h = 1) and with the 
wall cooled (h = 05).? The forward movement 
of the separation point with Mach number for 
a fured h may be noted here, together with the 
delay of separation due to wall cooling. More- 
over, the minimum (“critical”) values of cp 
above which separation is entirely avoided with 
zero heat transfer was calculated based on 
sixth degree profiles for M, = 0 to JlO, and 
the results are shown in Fig. 11. qrr is here seen 
to increase fairly rapidly with Mach number. 

cp for a given h for which dq/dc, = 0 yields the 
results for qEr vs. h shown in Fig. 12. Figure 12 
shows that for the range calculated (0.3 < h < 1.4) 
the effect of wall heating or cooling on (pC, is 

h 

FIG. 12. Variation of critical suction parameter with h for 
%I% = 1-<,M,=O. 

6 

9 GRIT 

4 

surprisingly small and in fact in the unexpected 
direction, in spite of the fact that wall cooling 
with a given suction parameter cp does appreci- 
ably delay separation (Fig. 9). Further investiga- 
tion of this problem, for example a precise 
determination, if possible, of rp, vs. h, would 
appear worthwhile. 

-L- 
4 

FIG. 11. Critical suction parameter for prevention of 
separation. Zero heat transfer. IQ/U, = 1 - 5. 

REFERENCES 

1. G. V. LACHMANN, editor, Boundary Layer and Flow 
Control-Its Principles and Application, Vols. 1 and 2. 

For the low-speed (M, = 0) flow charac- Pergamon Press, Oxford (1961). 

terized by equation (59) with uniform suction 
2. M. MORDUCHOW, Analysis and calculation by integral 

it may be noted that (admittedly very) approxi- 
methods of laminar compressible boundary layer with 
heat transfer and with and without pressure gradient, 

transfer (h = 1). Thus, sitting a, = 0, where 
a, is given by equations (13b) and (13e), yields 
(for ui/u, = 1 - r and M, = 0) 

120 - hc,z(K/(p’)[12 - c, + (b,/h)] = 0. (63) 

Approximating b, by equation (37b) (with c 

mate values of qa with heat transfer can be quite 

replaced by CJ and determining the value of 

easily obtained from the equations here, similarly 
to the manner described above for zero heat 

t For h = 0.5 the simplifying approximation of a con- 
stant F,, viz F, = F,, (in addition to a constant F,) was 
made. 

4. B. TH~AIT&, Investigation into the effect of continuous 
suction on laminar boundary-layer flow under Adverse 
pressure gradients, Aero. Res. Council of London, 
Rept. and Memo 2514 (1946). 

5. H. SCHLICHTING, Ein Ntierungsverfahren zur Berech- 
nung der Laminaren Reibungsschicht mit Absaugung, 
Zng.-Arch. 16, 201 (1948); also NACA TM 1216 (1949). 

6. H. G. LEW, On the compressible boundary layer over 

NACA TR 1245 (1955). 

a flat plate with uniform suction, Reissner Anniversary 

3. M. MORDUCHOW, Laminar separation over a transpira- 

Volume, pp. 43-60. EDWARDS. 
Ann Arbor, Mich, (1949). 

tion-cooled surface in compressible flow, NACA TN 
3559 (19551. 

7. T. P. TORDA, Boundary layer control by continuous 
surface suction or injection, J. Math. Phys. 31, 206 
(1952). 



COMPRESSIBLE LAMINAR BOUNDARY LAYER 1253 

8. A. C. JAIN, On compressible boundary layer on a 
flat plate with uniform suction, Proc. Indian Acad. Sci. 25. 

A 53, 12 (1961). 
9. M. MORDUCHOW and S. P. REYLE, On calculation of the 

laminar separation point and results for certain flows, 
J. Aerospace Sci. 29,996 (1962). 26. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

77 

H. G. &w and R. D. MA&&, Boundary layer control 
by porous suction, Penn. State Univ., Dept. Aero. Eng., 
TR No. 3 (1954). 
W. Wue~r, Survey of calculation methods of laminar 
boundary layers with suction in incompressible flow, 
in Boundary Layer and Flow Control-Its Principles and 
Application, edited by G. V. LACHMANN, Vol. 2, pp. 
771-800. Pergamon Press, Oxford (1961). 
M. R. HEAD, An approximate method of calculating 
the laminar boundary layer in two-dimensional in- 
compressible flow, Aero. Res. Council, Rep. and Memo. 
3123 (1959). 
M. R. HEAD, Approximate calculations of the laminar 
boundary layer with suction, with particular reference 
to the suction requirements for boundary-layer stability 
on aerofoil of different thickness/chord ratios, Aero. 
Res. Council, Rept. and Memo. 3124 (1959). 
M. R. HEAD, Approximate methods of calculating the 
two-dimensional laminar boundary layer with suction. 
in Boundnry Layer and Flow Control-Its Principles 
and Application, edited by G. V. LACHMAN& Vol. 2, 
pp. 801-841. Pergamon Press, Oxford (1961). 
N. CURLE, The estimation of laminar skin friction, 
including the effects of distributed suction, Aeronaut. 
Q. 11, l(1960). 
A. M. 0. SMITH and D. W. CLUTTER, Solution of the 
incompressible laminar boundary-layer equations, 
AZAA J 1,2062 (1963). 
R. IGLISCH, Exact calculation of the laminar boundary 
layer in longitudinal flow over a flat plate with homo- 
geneous suction, NACA TM 1205 (1949). 
A. A. GR~FL~TH and F. W. MEREDITH, The possible 
improvement in aircraft performance due to the use of 
boundary layer suction, Roy. Aircraft Est. Rept. 
E3501. Aero. Res. Council 2315 (1936). 
H. S~HLICHTING, Die Grenzschicht ‘an der Ebenen 
Platte mit Absaugen und Ausblasen, Luftfahrtforschung 
19, 293 (1942). 
J. PRETSCH, Grenzen der Grenzschichtbeeinflussung, 
Z. Angew. Math. Mech. 24,264 (1944). 
E. J. WATSON, The asymptotic theory of boundary- 
layer flow with suction, Aero. Res. Council, Rept. 
and Memo. 2619 (1947). 

&I._ A. D. YOUNG, Note on the velocity and temperature 
distributions attained with suction on a flat plate of 
infinite extent in compressible flow, Q. JI Mech. Appl. 
Math. 1, 70 (1948). 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

transfer, AZAA JI 1, 1949 (1963). 
H. SCHLICHTING and K. BUSSMANN, Exakte Losungen 
fi_ir die Laminare Reibungsschicht mit Absaugung 
und Ausblasen, Schr. Dr. Akad. LuftForsch. 7B(2) 
(1943). 
B. THWAITES, An exact solution of the boundary-layer 
equations under particular conditions of porous surface 
suction, Aero. Res. Council, Rept. and Memo. 2241 
(1946). 
H. W. EMMONS and D. C. LEIGH, Tabulation of the 
blasius function with blowing and suction, Aero. Res. 
Council, C.P. No. 157 (1954). 
J. C. Y. KOH and J. P. HARTNEIT, Skin friction and heat 
transfer for incompressible laminar flow over porous 
wedges with suction and variable wall temperature, 
Int. J. Heat Mass Transfer 2, 185 (1961). 
I. FL~~GGE-LOTZ and J. T. Howe, The solution of 
compressible laminar boundary layer problems by a 
finite difference method, Part III, The influence of 
suction or blowing at the wall, Stanford Univ., Div. 
Eng. Mech., Tech. Rept. 111 (1957). 
R. J. GRIBBEN, Laminar boundary layer with suction 
and injection, Physics Fluids 2, 305 (1959). 
W. PECHAU, Approximate method for calculating the 
compressible laminar boundary layer with continuously 
distributed suction, AZAA JI 1, 933 (1963). 
W. PECHAU, Approximate methods for the computation 
of a compressible laminar boundary layer with con- 
tinuous suction, D. V. L. Berichte No. 172 (1962). 
H. SCHLICHTING, Boundary Layer Theory, 4th edn., 
p. 341. McGraw-Hill, New York (1960). 
D. R. CHAPMAN and M. W. R~J~~IN, Temperature and 
velocity profiles in the compressible laminar boundary 
layer with arbitrary distribution of surface temperature, 
J. Aeronaut. Sci. 16, 547 (1949). 

35. P. A. LIBBY and M. MORDUCHOW, Method for calcula- 
tion of compressible laminar boundary layer with 
axial pressure gradient and heat transfer, NACA TN 
3157 (1954). 

36. M. MORDUCHOW and J. H. CLARKE, Method for calcula- 
tion of compressible laminar boundary-layer charac- 
teristics in axial pressure gradient with zero heat 
transfer, NACA TN 2784 (1952). 

37. R. TIMMAN, A one parameter method for the calculation 
of laminar boundary layers, National Luchtvaart- 
laboratorium, Rept. F. 35 (1949). 

38. M. MORDUCHOW, Review of theoretical investigations 
on the effect of heat transfer on laminar separation, 
AZAA JI 3(8), 1377 (1965). 

23. H. G. LEW and J. B. FANIJCCI, OII the laminar com- 
pressible boundary layer over a flat plate with suction 
or injection, J. Aeronaut. Sci. 22, 589 (1955). 

24. M. MORDUCHOW, General asymptotic suction solution 
of the laminar compressible boundary layer with heat 

39. L. PRANLXL, The mechanics of viscous fluids, Aero- 
dynamic Theory, edited by W. F. DURAND, Vol. 3, 
pp. 112-115. California Institute of Technology (1943). 

40. D. B. SPALDING, Mass transfer through laminar 
boundary layers-l. The velocity boundary layer, 
Int. J. Heat Mass Transfer, 2 15 (1961). 

41. M. ZAMIR and A. D. YOUNG, Similar and asymptotic 
solutions of the incompressible laminar boundary- 
layer equations with suction, Aeronaut. Q. 18,103 (1967). 

R&arm&La couche limite laminaire compressible avec gradient de pression et aspiration est analyde 
sur la base des equations intbgrales de quantite de mouvement et de I’Cnergie en utilisant des pro& de 



1254 MORRIS MORDUCHOW and STANLEY P. REYLE 

vitesse du sixitme et (pour le dicollement) du septitme degrC et des profils d’enthalpie d’arret du septitme 
dcgre. Pour Ies bcoulements sur une plaque plane et avec un gradient de pression, des methodes directes 
et simples sont donnees pour calculer Ia coucbe limite avec un nombre de Mach don&, une temperature 
parietale unifonne don&e et une distribution don& d’aspiration. Les rtsultats obtenus par la theotie 
actuelle sont en bon accord avec des solutions disponibles exactes ou pretendant 2tre p&&s, dans le 
cas d’une paroi permeable ou non, comprenant Ies solutions gtnbales asymptotiques avec aspiration 
pour des ecoulements compressibles avec gradient de pression et transport de chaleur. Les solutions 
asymptotiques sembleraient montrer qu’il serait toujours possibk d’eviter complbtement le decollement 
avec un gradient de pression contraire donnt (fini) B l’aide d’une aspiration sufftsante. On expose un cas 
mathematiquement simple de solutions pour lesquelks k gradient de pression est ftxi arbitrairement, 
mais la distribution d’aspiration est determitt& de facon implicite. Finalement, la couche limite avec une 
vitesse exttrieute diminuant lintairement, est calcuke en detail Ce qui est sp&cialement interessant est le 
retard et la dispatition du d&ollement par I’aspiration, y compris la determination du minimum du 
paramttre d’aspiration (homogtne) n&cessaim pour tviter entitrement le decollement. Les effets du nombre 

de Mach et de la temperature pa&ale sont exposes. 

Zusammeafasauag-Die kompressible laminare Grenxschicht mit Druckgradienten und Absaugung wird 
analysiert auf Grund der Integralgleichungen fib Impuls und Energie und in Verbindung mit Geschwindig- 
keitsprofilen sechster und (fur Abldsung) siebter Ordnung und Prolikn f6r die Staupunktenthalpie von 
siebter Ordnung. Fur Strijmungm entlang ebener Platten und Striimungen mit Druckgradienten werden 
direkte und einfache Methoden zur Berechnung der Grenxschicht bei gegebener Machxahl, gegebener 
gleichfiirmiger Wandtemperatur und gegebener Absaugungsverteilung mitgeteilt. Die in der vorliegenden 
Analyse erhaltenen Ergebnisse stimmen gut mit vert%gbaren exakten oder xiemlich genauen Losungen fur 
durchlllssige und undurchlllssige W&ride liberein, einschliesslich da allgemeinen assymptotischen Absau- 
gungslbsungen fiir kompressible Stromungen mit Druckgradienten und Wilrmeiibergang. Die assympto- 
tischen Liisungen deuten an, dass es immer mliglich sein miisste, durch ausreichende Absaugung eine 
Ablosung bei gegebcnem (endlichem) gegenllluligen Druckgradienten vollstiindig xu verhindern. Eine 
mathematisch einfache L&sung wird angegeben fiir einen beliebig vorgeschriebenen Druckgradienten 
bei einer implixit bestimmten Absaugungsverteilung Schliesslich wird die Grenzschicht f”ur linear 
abnehmende Pussere Geschwindigkeit im einxelnen berechnet. Von besonderem Interesse hier ist die 
Veniigerung und vollsti%ndige Vermeidung einer Ablosung durch Absaugung wofiir die kleinsten 
(homogenen) Saugparameter bestimmt werden. Einfhlsse der Machxahl und der Wandtemperatur sind 

angegeben. 

~~8qnrr-~po~oAK~cflaHansacmn~ae~orona~~~apHoronorpa~1i~~oroc;IoflcrpaA~et~- 

TOM AaBneHHR npH HanH'IWH OTCOCa Ha OcHoBe HHTerpanbHNX ypaBHeHd MoMeKTa K Tenna 

B CO'leTaHHH C PaClIpeAeJIeHHeM CKOpOCTH B UleCTOii W CeAbMOfi (AJIK OTpUBa) CTeneHW M 

paCnpeAeJIeHHR eHTaJlbIIHH TOpMOWeHHR B CeAbIdOti CTeneHA. 

nOKai3aHa BOBMOH(HOCTb npHMeHeHWi nepClleKTHBHHX K IlpOCTLdX MeTOAOB peUleHtifl 

norpaHHYHor0 CJIOA AJIR Cny'4aeB 06TeKaHHR nJlOCKOfi IlJIaCTHHbl H TeYeHKft npM KaZllqKK 

rpaAaeHTa AaBJleHUR npw aaAaHHarx wcnax Maxa,aaAaHHOM paBHOMepHOM pacnperreneww 

Terneparyphr crertmr A aagasttom pacnpegeneuuw 0Tcoca. l7onyseKHue peaynbTaTH Xopo~O 

COrJIaCyiOTCR C HaBeCTHbXMll TO'IHblMU HJIW npaKTwqecKK Towblnw peurewirrmlr ALIH Ke- 

nposauaewofi nnn npoHuuaer4oil CTeKKm, BKJIIOSaR o6qwe acKMnToTKqecKKe penrettw A;IH 

OTCOCa B noToKaX cmKMaeMo& WKAKOCTK npK HanH'IKKTennoodMeKaK rpaAKeHTa AaBneKHfl. 
AcnwnToTwqecKwe peureKwR noKaabIBamT, VT0 npn AocTaTowom 0Tcoce BcerAa MOWHO 

no,IHOCTb,O yCTpaHKTb OTpbtB npK 'ClaAaHHOM (KOHB'IHOM) OTpKlJaTeJlbHOM rpaAK'=Te AaBJe- 

HWR. PaCCMOTpeH MaTeMaTH'leCKW npOCTOti CJly'laft npK npOH'JBO.JbHO aaAaHHoM rPaAHeKTe 

,~a*neKwfl M 0npeAenKeMom B KexBKoM BsAe pacnpeAeneKaK OTCOca. HaKOKeU, cAe3aKu 

no;lpo6sbre pacqexzr norpattu~ttoro Cnofl npe nKHeitH0 yMeHbmaIoIUehYi BHeUlHeR CKOPOCT~. 

Oco6arg wurepec npencTaanfreT aageprtora II nOnHOe npeAoTBpaII&eHwe OTpblBa npll OTCOCe, 

Bmmast 0npeAeneHm hmimanbHor0 (romoreHHor0) napaareTpa oTc0ca ilnn nonbfioro 

npeAoTBpa~eHMH OTpIdBa. YWlTLdBaeTCFi BnKsuiKe wicnahfaxa w TemnepaTypu CTeHHH. 


